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Resumo 
 

 

 

Devido à proliferação de tecnologias sem fios de baixo alcance tais como Wireless Fidelity 

(Wi-Fi) ou Bluetooth os dispositivos móveis com capacidades multihoming estão a proliferar. A 

existência de diferentes interfaces físicas nestes dispositivos torna-os capazes de se 

interligarem a diferentes redes heterogéneas de uma forma auto-organizativa. Actualmente, 

para tornar as redes ad-hoc mais confiáveis, têm-se utilizado técnicas como o multihoming e o 

balanceamento de carga. No entanto, este tipo de técnicas não utiliza de uma forma eficiente e 

simultaneamente todas as interfaces físicas de rede presentes nos dispositivos móveis.  

Esta tese aborda o tema da utilização simultânea das várias interfaces sem fios de um 

mesmo dispositivo, tendo como objectivo principal analisar técnicas que possam permitir um 

melhor desempenho da rede. A análise deste desempenho assenta numa análise do 

melhoramento do débito e latência da rede. Para tal foi implementada uma abstracção situada 

entre a camada de aplicação e as várias interfaces de rede, que pode ser usada em redes ad-

hoc heterogéneas.  

Esta solução tem por base uma interface virtual que permite o uso simultâneo de várias 

interfaces de rede, escondendo a heterogeneidade das aplicações, e que permite a adição de 

um qualquer número de interfaces de rede, aumentando assim o ritmo de transmissão total do 

dispositivo. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Abstract 
 

 

 

With the advent of modern technology, mobile devices with multihomed capabilities are 

proliferating. Existence of different network interfaces in multihomed devices gives them the 

possibility to explore seamlessly roaming across heterogeneous networks. To make ad-hoc 

networks more reliable, one has often to use techniques such as multihoming and load-

balancing. However, these techniques do not make full use of all network interfaces presented 

in a mobile device.  

This thesis addresses the topic of using multiple network interfaces simultaneously as a way 

to increase the available throughput in wireless networks. It studies and compares different 

techniques that have been previously presented in the literature, and proposes an architecture 

applicable to a broader range of networks. To do so, we have implemented an end-to-end 

communication abstraction that can be used in heterogeneous mobile ad-hoc networks, from a 

mobile node (station) perspective. By heterogeneous it is here meant networks where nodes 

can transmit by relying on several short-range wireless technologies.  

Our solution is based on a virtual interface (vi) approach, which allows the usage of all active 

interfaces of a mobile device simultaneously, while hiding the heterogeneity from the 

applications and allowing any number of interfaces to be added, in the expectation of increasing 

the overall wireless throughput. 
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1 Introduction 
 

The transparent support of a multitude and variety of existing and emerging wireless and 

wired networking technologies is a driving force towards convergence of networks. Moreover, it 

is commonplace nowadays to have electronic devices with multiple networking capabilities. 

Personal computing devices, e.g., laptops, PDAs, smartphones, are typically equipped with 

several networking interfaces ranging from different flavours of Wireless Fidelity (Wi-Fi) to 

Ethernet, GPRS, UMTS, and Bluetooth. 

Adding to the diversity of network interfaces that end-user devices today include, the 

common Internet end-user has at his/her disposal a set of applications with significantly different 

bandwidth requirements and which comprise multimedia services, gaming, as well as 

collaboration, among others. However, most services provided today to the end-user simply 

take advantage of one network interface at a time. 

This perspective is bound to change due to the fact that more and more, different Service 

Providers (SP) serve the same household or enterprise location. As an answer to this increasing 

complexity, several traffic-engineering techniques are being applied to take advantage of the 

different interfaces available on a single device. This is the case of multihoming (cf. section 

2.3.1) and load-balancing (cf. section 2.3.2), techniques which have been used to give networks 

some redundancy and redirect traffic flows based on the device necessities (power, signal 

strength, available bit rate, etc), thus assisting in making the network more robust. Hence, 

multihoming and load-balancing aspects are to be surveyed, analyzed and compared to the 

work developed in this thesis, but as will be seen, the multiple and simultaneous use of different 

interfaces is still in an embryonic state, since it is not yet possible to make full use of all the 

physical interfaces present in mobile devices.  

Our main objectives are two-fold. Firstly, to understand up to which point and for which 

cases it is relevant to consider a single interface (as a virtual container for all the potential 

network interfaces in an end-user device). Secondly, to analyze and evaluate up to which point 

is possible to achieve an efficient utilization of multiple network interfaces by devices via rate 

control and optimal assignment of traffic flows to available networks. 

The remainder of this document is organized as follows:  

Chapter 2 surveys previous work in this area, addressing several possible ways to improve 

the effectiveness of a heterogeneous ad-hoc network, as well as some problems that may arise 

from the implementation of such solutions. 
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Chapter 3 describes the model of the proposed solution followed by the implemented 

architecture and approach taken, that transparently improves the cost-effective connectivity in 

heterogeneous access networks. 

Chapter 4 introduces some goals and the methodology followed. A generic description of the 

evaluation parameters and scenarios is then provided, followed by a description of the 

topologies implemented and of traffic settings. Finally it explains in a detailed manner the results 

obtained during the experiments. 

Chapter 5 concludes the thesis and proposes some directions for future work. 

 

1.1 Generic Applicability Scenarios 
 

This section provides an overview on global applicability scenarios that are the basis of the 

functionality to be described. Let us first provide a hypothetical scenario. Imagine a user in an 

enterprise setting participating in a video conference call via his/her multihomed1 device, which 

incorporates both a Bluetooth and a Wi-Fi (e.g. IEEE 802.11g) interface. While engaged in the 

conference proceedings, the user is uploading content on a remote server for the participants to 

access, and at the same time needs to retrieve some files from the server. Data is transmitted 

by the device which dynamically monitors the interfaces at its disposal. The device then routes 

the traffic via these physical interfaces based on the varying network characteristics like 

Available Bit Rate (ABR), delay and signal strength, and also based on specific user 

expectations (e.g. increase energy savings). By doing this the device would be able to use the 

interfaces at its disposal, but would not offer a transparent solution for the remaining of the 

network, and would not be using the interfaces at full capacity, since it is only allocating the data 

through them. 

What we propose can be seen in Figure 1.1, it provides technical details concerning one 

potential applicability scenario, where different multihomed end-user devices are interconnected 

in an ad-hoc way. Specifically, we consider four mobile devices, three of which are multihomed 

(Bluetooth and Wi-Fi interfaces). The physical interfaces of each mobile device are integrated 

into a global, virtual interface, represent on OSI Layer 2 by a virtual MAC, and on OSI Layer 3 

by a virtual IP, where the physical interfaces are behind the virtual interface, offering a 

transparent solution for both the application layer and the remaining of the network. 

                                                           

1 Multihomed describes a computer host that has multiple IP addresses to connected networks. A multihomed host 

is physically connected to multiple data links that can be on the same or different networks. 
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Figure 1.1: Ad-Hoc Scenario A with several access technologies (Bluetooth and 802.11x). 

 

The scenario presented in Figure 1.1 is a particular but good example of the heterogeneity 

presented in wireless networks. Albeit with capability to be used simultaneously, the current 

drivers of the mobile device do not take this into consideration. Our proposal is to consider a 

transparent way to make full use of all the interfaces by developing an abstraction interface, i.e. 

a virtual aggregation interface. This virtual interface is responsible for monitoring the physical 

network interfaces, and based on their availability as well as on our implemented policies 

mechanisms, it will use one or several simultaneously. Expectations are that it may increase 

throughput, improve energy efficiency, as well as potentially reduce the network latency. 

 In this type of scenario, some questions we shall consider and attempt to answer are: 

 Is it possible to consider such a global virtual interface both from a network and from a 

user perspective?  

 If technically this is feasible in a way that optimizes network efficiency, what are the 

technical implications of developing such interface?  

 Intuitively, in terms of network robustness there are clear benefits to consider, but there 

are also open issues which need to be analyzed, e.g., RTT delay and reordering 

consequences. 

A second applicability scenario, our proposal addresses, relates to multihomed mobile 

devices that interconnect to different access networks. This is often the case today for 

residential users that have e.g. at least one fixed line connection terminated by Wi-Fi, and a 3G 
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connection. By developing adequate virtualization, one can assist in the optimization of mobility 

(vertical handover scenarios) from a user and network perspective. See Figure 1.2 for a 

conceptual representation, where we have different access networks (3G and Wi-Fi), and a 

virtual interface, is deciding which interface(s) to use in a certain moment. 

 

Mobile Device

Internet
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MAC2: 77.54.82.1

802.11x 

Interface

3G

 Interface

Virtual 

Interface

MACV Access Point

(AP)

Base Transceiver Station

(BTS)

 

Figure 1.2: Scenario B with several access technologies (3G and 802.11x). 

 

1.2 Goals, Assumptions, and Expected Results 
 

The main goals of this work are: 

 To conceive and to develop cooperative access mechanisms which assist in distributing 

information to several users based on virtualization techniques that assist multiple network 

interfaces to be transformed into a single interface, for both, the network and the 

applications. 

 To improve the efficiency of heterogeneous wireless networks by considering dynamic and 

intelligent load-balancing techniques across different available and active interfaces, with 

and without virtualization. 

 To optimize horizontal handovers and Quality of Service based on the developed 

mechanisms. 

 To understand the impact of the developed solutions on current Internet wholesale models. 

Our goal is to integrate heterogeneous mobile ad-hoc networks that use different wireless 

network technologies and conceive/develop cooperative access mechanisms which assist in 
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distributing information to several users. Although we are interested in a generic solution, we 

take a network that combines different flavors of 802.11x as a basis for this thesis. 

This thesis is focused on a promising end-to-end communication abstraction that can be 

used in heterogeneous mobile ad-hoc networks. The solution is based on a virtual interface (vi) 

approach, which allows the usage of all interfaces presented in a mobile device simultaneously, 

while hiding the heterogeneity from the network and allowing any number of interfaces to be 

added, increasing the total throughput. 

The contributions of the thesis can be enumerated as follows: 

 A brief survey, analysis and comparison of previous work done in this area. 

 An end-to-end communication abstraction, also known as virtual interface. 

 A method of intercepting the data and relaying it to the virtual interface without adding 

excessive overhead. 

 Several mechanisms which will allow a throughput gain, by exploring the simultaneous 

usage of several physical interfaces present in a mobile device. 

 Power saving mode, choosing the interfaces which will transfer a certain data flow while 

consuming the lowest amount of energy. 
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2 State-of-the-Art 
 

This work addresses the efficient utilization of multiple network interfaces of a single device 

by devices, via rate control and optimal assignment of traffic flows to available networks, with a 

special emphasis on Ad-Hoc networks. This section introduces fundamental concepts, starting 

with a brief overview of the wireless architectures, followed by an analysis of current related 

research. 

Section 2.1 gives an overview of some short-ranged wireless technologies, such as IEEE 

802.11 (Wi-Fi) and IEEE 802.15.x (Bluetooth) and introduces the evolution of the wireless 

networks, starting with the infrastructure mode, followed by the ad-ahoc mode. 

Section 2.2 reviews some related technologies, such as Femtocells and Smart APs, used to 

empower the end-user. 

Section 2.3 describes how to deal with multiple interface devices, with a special emphasis to 

the multihoming and load balancing mechanisms, features, drawbacks (such as handover), 

advantages, as well as the interface virtualization technique, given that one of the main goals of 

this thesis is to improve the cost-effective connectivity, which will require the virtualization of 

interfaces, to handle different physical interfaces in a transparent way. 

Section 2.4 reviews some Linux networking components, how they work and interact with 

each other. In this section, some of these components, such as Netfilter and iptables are 

presented. Finally, in section 2.5 there is a small discussion identifying the problems and 

drawbacks in the surveyed work. 

 

2.1 Emerging Wireless Architectures and Technologies 
 

The explosive growth of the Internet over the last decade has led to an increasing demand 

for high-speed, ubiquitous Internet access. Broadband Wireless technologies are increasingly 

gaining popularity by the successful global deployment of the Wireless Personal Area Networks 

(Bluetooth- IEEE 802.15.1), Wireless Local Area Networks (WiFi- IEEE 802.11x), and Wireless 

Metropolitan Area Networks (WiMAX-IEEE 802.16) [1]. Using open broadband Wireless 

technologies and implementing mobile computing architectures, one can overcome the 

challenges of ground, infrastructure, and finance to increase access; deploy broadband quickly 

and cost-effectively to areas currently not served; and extend the benefits of digital revolution to 

previously unreachable populations. 
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In this section we will only be introducing Wireless Personal Area Networks (Bluetooth-IEEE 

802.15.1) and Wireless Local Area Networks (WiFi-IEEE 802.11x), as these are the 

technologies that fall under the scope of this thesis. 

2.1.1 Short-range Wireless Technologies 
 

Emerging technologies such as Bluetooth (BT) and 802.11b (Wi-Fi) have fuelled the growth 

of short-range communication industry. The differences between their standard features (data 

rate, distance range, security, and communication protocol) have lead to a natural partitioning of 

applications.  

 

2.1.1.1 Bluetooth and Wi-Fi 

 

BT, the leading WPAN technology, was designed primarily for low-cost cable replacement. 

On the other hand Wi-Fi, today the most popular short-range wireless technology, was initially 

conceived as a simple and plug&play way to extend the reach of fixed lines – Wi-Fi is based on 

the Ethernet standards. Nonetheless, the fact is that today most UEs for personal use such as 

laptops and PDAs, require both BT and Wi-Fi standards to cover a wider range of applications 

in both the home and office spaces. 

Wireless communication systems use one or more carrier frequencies (frequency bands) to 

communicate. Bluetooth and Wi-Fi share the same 2.4 GHz band, which under Federal 

Communications Commission (FCC) regulations, extends from 2.4 to 2.4835 GHz. Under the 

ISM band rules defined in FCC Part 15.247, this frequency band is free of tariffs. It is license 

exempt in Europe. However, systems must operate under certain constraints that are supposed 

to enable multiple systems to coexist in time and place. 

These two technologies are described in more detail in the annex section, since they are 

important but not essential to the understanding of the proposed solution.  

 

2.1.2 Wi-Fi Modes of Operation 
 

There are two different models for Wi-Fi networks that exist today: Infrastructure mode and 

Ad-Hoc mode.  

In Infrastructure mode the wireless network consists of at least one access point connected 

to the wired network infrastructure and a set of wireless end stations. This configuration is called 
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a Basic Service Set (BSS). An Extended Service Set (ESS) is a set of two or more BSSs 

forming a single subnetwork. Since most corporate WLANs require access to the wired LAN for 

services (file servers, printers, and Internet links) they will operate in infrastructure mode (cf. 

Figure 2.1).  

A big advantage of this model is the possibility for the network (and consequently the access 

operator) to better manage resources. The flip-side is that it requires some specific hardware 

and some previous planning of the network, undermining the possibility for users to start 

communication sessions spontaneously, where and whenever they want. 

Ad-Hoc mode (also called peer-to-peer mode or an Independent Basic Service Set, or IBSS) 

is simply a set of 802.11 wireless stations that communicate directly with one another without 

using an access point or any connection to a wired network. This mode is useful for quickly and 

easily setting up a wireless network anywhere that a wireless infrastructure does not exist or is 

not required for services [3], such as a hotel room, convention center, or airport, or where 

access to the wired network is blocked (cf. Figure 2.1). 

The routing in mobile ad-hoc networks necessitates specialized algorithms and protocols 

that can cope with the dynamic nature of appearing and vanishing neighbors. Two major 

protocols have been used in this work, not only to test the virtual interface in a realistic 

environment, but also to update the information regarding the available neighbors of the mobile 

device. A more indebt description of the two algorithms can be found in the annex section of this 

thesis (cf. Annex II). 

Today, the most common instances of ad-hoc networks are Mobile Ad-Hoc Networks 

(MANETs), and mesh networks. A MANET is purely an ad-hoc network where some nodes 

move. While a mesh network is considered to be a set of nodes (multihop or not) which would 

be static [2]. 

A more recent type of wireless architecture is a user-provided network (UPN). A UPN is a 

wireless network (be it infrastructure, ad-hoc, or mesh) [4], which is triggered by the willingness 

of some end-users to cooperate (based on cooperation incentives) in a spontaneous way. UPNs 

are architectures that operate in isolation or as complement to access technologies (e.g. 3G) 

being the main difference to the older wireless architectures the fact that networking nodes are 

controlled partially by the end-user. It should be noticed that the aspect of having some access 

control moved to the end-user is an essential aspect that is being pursued also from an access 

perspective, as can be seen in section 2.2, where femtocells and smart APs are addressed. 
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Figure 2.1: infrastructure and ad-hoc modes. 

 

2.2 Empowering the end-user: Femtocells and Smart APs   
 

In this section some technologies, such as Femtocells and smart APs, responsible for 

empowering the end-user connectivity are presented. These kinds of technologies, in some 

circumstances, improve the network signal by automatically taking certain decisions for the 

user, making use of their knowledge about the available network resources. 

 

2.2.1 Femtocells 
 

Femtocell is a recent technology which uses the IP backbone network along with small-size 

base stations, based on cellular technology, located indoors. Doing so, femtocells support 

compatibility with the cellular systems, and at the same time, provide better indoor signal 

strength [10], commonly unattainable by macrocell coverage operating at higher frequencies. 

The femtocell appears to the standard 3G phone as just another cell site from the host 

mobile operator, and can be used by almost any 3G phone including roamers visiting from other 

countries. 

The mobile operators telephone switch (MSC) and data switch (SGSN) also communicate to 

the femtocell gateway in the same way as for other mobile calls. Therefore, all services 

including phone numbers, call diversion, voicemail etc. all operate in exactly the same way and 

appear the same to the end user. 
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The connection between the femtocell and the femtocell controller uses secure IP encryption 

(IPsec), which avoids interception and there is also authentication of the femtocell itself to 

ensure it is a valid access point. Figure 2.2 illustrates the system architecture and context for 

femtocell operation. 

Inside the femtocell are the complete workings of a mobile phone base station (BTS). 

Additional functions are also included such as some of the Radio Network Controller (RNC) 

processing, which would normally reside at the mobile switching centre. Some femtocells also 

include core network element so that data sessions can be managed locally without needing to 

flow back through the operators switching centers. 

To summarize, the capacity benefits of femtocells are attributed to: 

 Reduced distance between the femtocell and the user, which leads to higher received 

signal strength; 

 Lowered transmit power, and mitigation of interference from neighboring macrocell and 

femtocell users due to outdoor propagation and penetration losses; 

 As femtocells serve only around one to four users, they can devote a larger portion of 

their resources (transmit power and bandwidth) to each subscriber. A macrocell, on the 

other hand, has a larger coverage area (500 m–1 km radius) and a larger number of 

users; providing quality of service (QoS) for data users is more difficult. 

 

 

 

Figure 2.2: System architecture and context for femtocell operation. 
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2.2.2 Smart APs 
 

Wireless access points are rapidly increasing in number and variety, providing people with 

connectivity in almost all buildings they enter (e.g. home, work place, etc.). The wireless 

medium, in fact, is naturally prone to be shared by several users who may interfere with each 

other, harming the performance of UDP-based real-time flows (e.g., online gaming) as TCP 

continuously probes the channel for more bandwidth, thus eventually generating queues 

(delays) on the connection [11]. 

A smart Access Point can take advantage of its knowledge about available wireless network 

resources and the on-going traffic in order to appropriately limit TCP‟s advertised windows so as 

to smooth the network traffic progression and avoid queuing delays [12]. Furthermore, a smart 

Access Point also provides radio functionality and has most of its network intelligence in the 

same box, thus these devices can handle most of the protocols for roaming, encryption, 

management, user authentication, and so forth. A smart AP presents the end-users it serves to 

the wired network switch as if they were physically connected, reducing the load on central 

switches within the wired LAN, albeit at the cost of needing to be managed [13].  

Integrating network services directly into the AP also enables important services to be 

pushed out to the first point of contact with the wireless user. The thought is that by provisioning 

access control lists and policies directly from the radio function, end-users can move, for 

example, onto another subnet in another corporate location, and still retain all their access 

rights. 

 

2.3 Dealing with Multiple Interfaces  
 

Today‟s end-user devices are equipped with several network interfaces and have at their 

disposal a multitude of applications with different bandwidth requirements. To make use of this 

variety, some mechanisms such as multihoming, load-balancing, bandwidth aggregation and 

interface virtualization, have been used to grant end-user with some redundancy, help solving 

some mobility problems and make a better use of all available interfaces. In this section we 

introduce some of these solutions and survey some work done in this area. 
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2.3.1 Multihoming  
 

In multihoming, a single computer host makes use of several IP addresses associated with 

various connected networks. Within this scenario, the multihomed computer host is physically 

linked to a variety of data connections or ports. These connections or ports may all be 

associated with the same network or with a variety of different networks. Depending on the 

exact configuration, multihoming may allow a computer host to function as an IP router.  

One possibility for the process of multihoming makes use of what is known as Stream 

Control Transmission Protocol, or SCTP. Essentially, the process involves employing 

multihoming by making use of a single SCTP endpoint to support the connectivity to more than 

one IP address. By establishing connection to multiple addresses, multihoming can help to 

enhance the overall stability of the connectivity associated with the host [14].  

One of the advantages of multihoming is that the computer host is somewhat protected from 

the occurrence of a network failure. With systems that make use of a single IP address and 

connection, the failure of the connected network means that the connection shuts down, 

rendering the end system ineffectual as far as connectivity to the Internet is concerned. With 

multihoming, the failure of a single network only closes a single open door. All the other doors, 

or IP addresses associated with the other networks, remain up and functional.  

Multi-homed networks are often connected to several different Internet Service Providers 

(ISPs). Routers use Border Gateway Protocol (BGP), a part of the TCP/IP protocol suite, to 

route between networks using different protocols [15]. 

In general, multihoming is helpful for three elements of effective web management. First, 

multihoming can help to distribute the load balance of data transmissions received and sent by 

the computer host by lowering the number of computers connecting to the Internet through any 

single connection. Second, the redundancy that is inherent to multihoming means less 

incidences of downtime due to network failure. Last, multihoming provides an additional tool to 

keep network connectivity alive and well in the event of natural disasters or other events that 

would normally render a host inoperative for an extended period of time [14].  

 

2.3.2 Load-balancing  
 

In computer networking, load-balancing is a technique to distribute workload evenly across 

two or more computers, network links, CPUs, hard drives, or other resources, in order to get 

optimal resource utilization, maximize throughput, minimize response time, and avoid overload. 

Using multiple components with load-balancing, instead of a single component, may increase 
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reliability through redundancy. The load-balancing service is usually provided by a dedicated 

program or hardware device (such as a multilayer switch or a DNS server). 

One of the most common applications of load-balancing is to provide a single Internet 

service from multiple servers, sometimes known as a server farm.  

A variety of scheduling algorithms are used by load balancers to determine which backend 

server to send a request to [16]. Simple algorithms include random choice or round robin. More 

sophisticated load balancers may take into account additional factors, such as a server's 

reported load, recent response times, up/down status (determined by a monitoring poll of some 

kind), number of active connections, geographic location, capabilities, or how much traffic it has 

recently been assigned. High-performance systems may use multiple layers of load-balancing. 

 

2.3.3 Network Switching 

 

The authors of On Effectively Exploiting Multiple Wireless Interfaces in Mobile Hosts study if 

heterogeneous wireless interfaces can be aggregated with intelligent strategies to improve 

throughput beyond sum of the parts, as they call them super-aggregation principles. The 

authors propose three principles in the context of TCP that achieve super-aggregation benefits 

in Wi-Fi network when by adding a 3G interface [21]:  

 Selective offloading: some of the interfaces may have a limited bandwidth, and by 

selectively offloading some portions of the data transferred it can cause a significant 

impact on the performance. 

 Proxying: when an interface has only limited bandwidth but is up when the other interface 

is down, the limited bandwidth can be used for critical control information that in turn can 

serve to significantly improve the overall performance of the data transfer. 

 Mirroring: for certain portions of the data being transferred intelligently mirroring the 

transfer on the interface with lower bandwidth can again have a profound impact on the 

perceived performance.  

The super-aggregation principles presented can be implemented as a layer-3.5 software 

middleware in the mobile host. It can be implemented in the Linux kernel and uses NetFilter [22] 

to capture and process TCP packets traversing the network stack, or generate packets if 

necessary. The super-aggregation principles only require deployment at the mobile device and 

do not require any modification at the remote host or intermediate routers. The TCP 

implementations on the remote host and the mobile device are unaware of the super-

aggregation principles that improve their performances transparently [21]. With this deployment 
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model, super-aggregation can enhance end-to-end performance of mobile host with any legacy 

TCP-based server. 

This solution although making possible the usage of two interfaces simultaneously (in this 

case Wi-Fi and 3G) and increasing the total throughput, does not escalate to more interfaces, 

does not take in consideration the use of two interfaces with similar bandwidth since it uses the 

interface with lower transmission rate to send certain small messages (e.g. ACK messages) and 

the other interface to send and receive the remaining data. 

The tests prove that their solution in fact provides clear improvements in terms of throughput 

beyond the sum of the parts, which did not happen with other simple aggregation solutions 

[23][24][25], but unfortunately the authors only tested their solution with TCP data, neglecting 

the UDP data. 

 

2.3.4 ISP Switching  
 

The authors of [17] investigate the feasibility of switching among ISPs to exploit the benefits 

of choosing the ISP with better connectivity conditions (in the sense of a cost function that may 

include throughput, access cost, among others) at any given time. This approach is suitable for 

connections with long duration such as file transfer or streaming applications that need to switch 

from a congested ISP to a non-congested one, if available. 

To analyze topological path diversity, the authors use traceroute data. They first trace the 

end-to-end paths from the test-bed to each of the destinations through both ISPs. To resolve IP 

aliases the authors use sr-ally [17].  

To measure latency, loss and jitter on both ISPs, the authors send probe packets 

simultaneously through two network interfaces so that the probe packets travel through both 

ISPs at the same time.  To measure the round-trip time (latency) and packet loss ratio they use 

ping. Since it is desirable to have no (or low) overlap among the alternative paths provided by 

multihoming, the authors also defined the metric Single Source Path Overlap (SSPO) to express 

the path overlap between a multihomed user and any host in the network. As shown in Figure 

2.3, the path overlap occurs for a multihomed host at the edge network with which the source 

node is connected. SSPO is an estimation of the expected fraction of hop overlap, which is the 

ratio of the shared hops to the total non-shared hops of all paths. 
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Figure 2.3: Path diversity, user A has two separate paths to reach user B. 

 

The key insight into the potential benefits of multihoming is that not only it provides first hop 

path redundancy, but more generally it offers highly diverse end-to-end paths both in topology 

and network layer metrics such as latency, loss, and jitter [18]. 

 

2.3.5 Aggregation: Interface virtualization 

 

In this section, we introduce the interface virtualization technique, which intends to hide the 

heterogeneity created by the use of all network interfaces, presented in mobile devices, from the 

applications, with special emphasis to one specific work, presented in section 2.4.5.3 that 

implements a virtual interface as a layer two device, capable of hiding all physical interfaces 

under it, which ended up being a base for this thesis.  

 

2.3.5.1 Interface Virtualization 

 

Virtualization was first introduced in the 70‟s by IBM as a way to assist in supporting 

concurrent processes on a single machine. Out of these emerged different systems which are 

today common in any machine. 

Within the context of wireless networks, virtualization is being heavily applied due to the rise 

of Software Defined Radio (SDR). SDR gives the means not only to take better advantage of a 

single wireless interface (multiplexing) but also to consider aggregating radio resources in a way 

that makes the network more robust. But the key aspect in virtualization applied to wireless 

networks is that such a system can take advantage of a multitude of proprietary radio 

technologies in a way that makes it transparent to the application and to the end-user. A 

technology that is often used with SDR is the Cognitive Radio (CR), a form of wireless 

communication in which a transceiver can intelligently detect which communication channels 
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are in use and which are not, and instantly move into vacant channels while avoiding occupied 

ones. This optimizes the use of available radio-frequency (RF) spectrum while minimizing 

interference to other users. 

On the other hand, a software radio Base Transceiver Station (BTS) is much more readily 

virtualized than a hardware radio, since the BTS is just a software application. It is possible to 

construct a virtualized base station by using standard virtualization technology to create a virtual 

machine (VM) per operator, and running an independent BTS application for each operator 

within that VM. This ensures that each operator has complete control over their BTS, while 

guaranteeing that one operator's traffic, signaling and configuration data are isolated from other 

operators. 

A virtual interface approach is the most convenient solution for heterogeneous mobile ad-hoc 

networks in terms of transparency [20]. To provide a faster path between applications and the 

network, most researchers have advocated removing the operating system kernel and its 

centralized networking stack from the critical path and creating a userlevel network interface 

[19]. With these interfaces, designers can tailor the communication layers each process uses to 

the demands of that process. Consequently, applications can send and receive network packets 

without operating system intervention, which greatly decreases communication latency and 

increases network throughput [20].   

Figure 2.4 shows system memory with two applications accessing the network through a 

user-level network interface. A device driver in the operating system controls the interface 

hardware in a traditional manner and manages the application‟s access to it. 

Applications allocate message buffers in their address space and call on the device driver to 

set up their access to the network interface. Once set up, they can initiate transmission and 

reception and the interface can transfer data to and from the application buffers directly using 

direct memory access. 

User-level network interface designs vary in the interface between the application and the 

network. How the application specifies the location of messages to be sent, where free buffers 

for reception get allocated, and how the interface notifies the application that a message has 

arrived. Some network interfaces, such as Active Messages or Fast Messages, provide send 

and receive operations as function calls into a user-level library loaded into each process.  
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Figure 2.4: System memory using a user-level network interface. Figure extracted from [19]. 

 

2.3.5.2 Bluetooth Network Encapsulation Protocol – BNEP 

 

The Personal Area Networking (PAN) Bluetooth Network Encapsulation Specification 

describes the protocol to be used by the Bluetooth PAN profiles. The document [26] defines a 

packet format for Bluetooth network encapsulation used to transport common networking 

protocols over the Bluetooth media. Bluetooth network encapsulation supports the same 

networking protocols that are supported by IEEE 802.3/Ethernet encapsulation. Packets from 

the supported networking protocols are contained in Bluetooth network encapsulation packets, 

which are transported directly over the Bluetooth L2CAP protocol. 

In the scope of this thesis, BNEP can be used to encapsulate Bluetooth packets, making it 

possible to create an ad-hoc network that contains devices with both Bluetooth and 802.11x 

physical interfaces, which makes it possible to hide both type of interfaces under one virtual 

interface. 

 

2.3.5.3 Transparent Heterogeneous Mobile Ad-Hoc Networks 

 

The authors‟ of this work [28] goal was to develop an end-to-end communication abstraction 

that supports MAC-switching1, node mobility and multihoming1. Two issues to be solved are 

                                                           

1 Refers to the fact that the used MAC technology may change along a source/destination path. 
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broadcast emulation and handover. Broadcast emulation because broadcast is not directly 

supported in Bluetooth (or on nodes comprising both Bluetooth and 802.11). 

Handover is an issue because, in the case of heterogeneous mobile ad-hoc networks, a 

handover might include a change in how the medium is accessed. A handover can be caused 

by node mobility, a change in user preferences (the user chooses to save energy and use 

Bluetooth instead of 802.11), or performance reasons. 

The proposed solution is inspired by the Linux Ethernet Bridge [27]. Similar to a physical 

bridge device, the Linux Ethernet bridge ties separate layer-two-networks together, only that it is 

purely software. It appears to the operating system as a regular layer-two-device one can easily 

assign IP addresses to bridges. The bridge is supposed to work in combination with 802.x 

devices, therefore not including Bluetooth. Fortunately, the Bluetooth personal area network 

(PAN) profile specifies BNEP [26] which itself defines a packet format to transport common 

networking protocols over the Bluetooth media. BNEP supports the same networking protocols 

that are supported by IEEE 802.3/Ethernet encapsulation, therefore enabling Bluetooth to be 

used within the bridge. 

The authors define a Virtual Interface (vi) that is responsible for storing a MAC/Interface 

mapping, based on incoming packets. Like a Linux ethernet bridge, the vi represents a regular 

layer-two-device and can be configured accordingly. The vi allows to plug in any 802.x 

compatible network device, like e.g a wireless LAN card or a BNEP/Bluetooth connection, while 

hiding the heterogeneity of the used devices from the upper layers. For every neighbouring 

node, the vi holds an array of possible outgoing interfaces in a so called neighbouring database. 

The author‟s solution is not bound to 802.11x or Bluetooth, but works together with any 802.x-

compatible MAC Layer. The vi in combination with a MANET routing protocol supports 

multihoming, dynamic reconfiguration and node mobility. 

If the vi receives a packet from the upper layer for delivery, it first checks the packet type. In 

case the packet is a broadcast packet, it will be sent through all available interfaces. Therefore, 

the vi also acts as a broadcast emulation layer for Bluetooth. However, if the packet is unicast, 

the vi looks for the corresponding entry in the neighborhood database mentioned above and 

retrieves the information about the interface the packet has to be sent to (entries are periodically 

checked for expiration). If there is more than one option, the vi makes use of another feature, 

the so called priority table. The priority table specifies a ranking among the interfaces, meaning 

that whenever a given neighbour can be reached through several interfaces, the interface with 

the lowest priority is taken. This means that the vi also acts as a load-balancing mechanism, 

capable of prioritizing interfaces based on different factors (e.g. energy consumption).  

                                                                                                                                                                          

1 A node having multiple network interfaces. 
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The authors also introduce a parameter that is associated with a vi, the so called maxdiff 

threshold. The maxdiff threshold unit is 10ms and it decides how much two single entries within 

the neighborhood database may differ in terms of timestamps to keep the priority policy up. So a 

higher ranked interface entry can be replaced by a lower priority interface if the timestamp 

differs for more than maxdiff [28]. 

The experiments presented demonstrate the feasibility of the abstraction and its potential in 

building heterogeneous ad-hoc wireless networks. The measurements show that the system 

performs well. There is almost no overhead when using the additional vi on top of a physical 

interface. Generally, the vi performs better in combination with AODV than with OLSR. Except 

for the case of priority driven handover, the vi also works without a MANET routing module. 

However, a routing module increases the performance in terms of packet loss during handover. 

In the case of multiple physical interfaces there is a trade-off between agility in terms of vertical 

handover and throughput for UDP traffic [28]. The evaluation is clear for the same technology, 

but not when relying on different technologies. 

Even though this work presents an end-to-end communication abstraction that can be used 

in heterogeneous mobile ad-hoc network, it does not make full use of the interfaces presented 

in mobile devices. Meaning, this solution does not offer the possibility to use both interfaces 

simultaneously, to send different traffic flows of information in order to increase the overall 

transmission rate. 

 

2.3.5.4 Linux Ethernet Bridge 
 

The Linux Ethernet Bridge allows putting several real interfaces into a virtual bridging device 

[29]. It is not only an in-kernel equivalent to a real Ethernet bridge but together with Netfilter a 

very sophisticated tool for packet filtering. Packets are forwarded based on Ethernet address, 

rather than IP address (like a router). Since forwarding is done at Layer 2, all protocols can go 

transparently through a bridge. The Linux bridge code implements a subset of the ANSI/IEEE 

802.1d standard. 

Bridging is supported in the 2.4 and 2.6 kernels from all the major distributors. The required 

administration utilities are in the bridge-utils [29] package in most distributions. 

An Ethernet bridge distributes Ethernet frames coming in on one port to other ports 

associated to the bridge interface. Whenever the bridge knows on which port the MAC address 

to which the frame is to be delivered is located, it forwards this frame only to this port instead of 

polluting all ports together. Ethernet interfaces can be added to an existing bridge interface and 

become then (logical) ports of the bridge interface. 
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    Putting a Netfilter structure on top of a bridge interface renders the bridge capable of 

servicing filtering mechanisms. This way, a transparent filtering instance can be created. It even 

needs no IP address assigned to work. Of course, an IP address can be assigned to the bridge 

interface for maintenance purposes. 

    The advantage of this system is evident. Transparency alleviates the network administrator 

of the pain of restructuring the network topology.  

 

2.4 Linux Kernel Aspects 
 

To fully understand this thesis and all tools used in its implementation, it is essential to 

understand how some Linux networking components work, and how they interact with each 

other. In this section, some of these components, such as Netfilter and iptables are presented. 

  

2.4.1 Netfilter 
 

Netfilter [31] consists of a number of hooks at various points inside the Linux protocol stack. 

It allows user-defined kernel modules to register callback functions to these hooks. When a 

packet traverses a hook, the packet flows through the user defined callback method inside the 

kernel module. The Linux kernel contains many so-called Netfilter targets to build powerful 

packet filter rule sets. Netfilter can intercept packets at many states of their processing and 

perform arbitrary operations on them. 

The Netfilter framework has been incorporated into the Linux kernel 2.4 or later versions to 

replace the old ipchains architecture [31]. In the new architecture, the iptables command, which 

will be shortly described in the next section, is a user-space program that can configure kernel-

space modules such as firewall, network address translation, port-forwarding, and QoS. All 

filtering rules, including the proposed improvement, can be added into the kernel-space via the 

iptables command. 

    The Netfilter framework has five hooking points in the kernel as shown in Figure 2.5: 

 NF_IP_PRE_ROUTING, 

 NF_IP_LOCAL_IN, 

 NF_IP_FORWARD, 

 NF_IP_LOCAL_OUT, and 
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 NF_IP_POST_ROUTING. 

 

NF_IP_PRE_ROUTING and NF_IP_POST_ROUTING are the hooking points for packets 

that enter and leave the system, respectively. NF_IP_LOCAL_IN is the hooking point for 

packets that are redirected to the user-space local processes after entering the system. 

NF_IP_LOCAL_OUT is the hooking point that packets leave the user-space local processes. 

NF_IP_FORWARD is the hooking point that packets are forwarded from one network interface 

to another. 

Packets will pass through hooking points sequentially. On each hooking point, users may 

configure some filtering rules via the iptables command. After packets pass through 

NF_IP_PRE_ROUTING, the Linux kernel makes the routing decision to decide whether packets 

should enter the local processes or be routed to the next hop through another network interface. 

Hook functions will return one of five kinds of results when a packet passes through each 

hooking point.  

The five possible results include: 

 NF_DROP: to drop the packet; 

 NF_ACCEPT: to accept and forward the packet to the next hooking point or network 

interface; 

 NF_STOLEN: temporarily to ignore the packet and process the packet later, like 

modifying the contents of the packet; 

 NF_QUEUE: to store the packet that will be later examined by other user-space 

processes, like snort; 

 NF_REPEAT: to return the packet to the current hooking point in order to match other 

rules. 

A basic firewall requires only NF_DROP and NF_ACCEPT states to satisfy users‟ needs. 
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Figure 2.5: Hooking points in Netfilter. 

 

In the scope of this thesis, Netfilter can be used to intercept the data coming from and to the 

application, redirecting it to the virtual interface, which will then decide what to do with that 

information. 

 

2.4.2 Iptables 
    

“iptables” is a user-space program for users to configure filtering rules or network address 

translation rules into Linux Netfilter kernel modules. There are three kinds of tables that iptables 

can configure. They are filter, nat, and mangle tables. Each table is associated with one of the 

major functions of Netfilter [35]. Users can configure iptables rules based on the three 

tables/functions. Because iptables rules set in each table may be activated in different hook 

points, rules of the same table may then be partitioned into different chains each of which 

corresponds to a hook point. Table 2.1 shows the relationship between tables and chains. 

 

Table Chain 

 
Filter 

INPUT 
FORWARD 
OUTPUT 

 
Nat 

PREROUTING 
OUTPUT 

POSTROUTING 

 
 

Mangle 

PREROUTING 
INPUT 

FORWARD 
OUTPUT 

POSTROUTING 

Table 2.1: Chains used in each table. 
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Table 2.2 shows an example of an iptables rule. The “-t” option describes which table the rule 

should be set into. The “-A” option describes which chain the rule should be added in. This 

option also indicates the corresponding hook point on which the rule may be applied. The “-p” 

option indicates which type of data we are referring to. The “-i" option describes which physical 

interface the rule is being applied to. The “--dport" describes the port, in this case it is the port 

assigned to the ssh protocol, which by default is port 22. The last “-j ACCEPT” indicates that the 

packet should be accepted when matching the rule. 

 

iptables –t mangle -A INPUT -p tcp -i eth0 --dport ssh -j ACCEPT 

Table 2.2: iptables rule example. 

 

A more complete and advanced look into the kernel world as well as introduction to a few of 

the basic concepts of Linux kernel programming is given in Annex III of this thesis. 

 

2.5 Discussion 
 

As seen in the above sections there is some research done regarding mobility management 

and multihoming; however, there is not an adequate solution, that makes full and simultaneous 

usage of all interfaces present in a mobile device, not only in terms of adequate load-balancing, 

but also in considering the physical aspects of the various interfaces/channels to send different 

traffic flows of information to one or more networks.  

The paper presented by the authors of the Transparent Heterogeneous Mobile Ad-Hoc 

Networks (Section 2.3.5.3) is the closest work we found to our proposed solution.  We 

implemented a similar solution, using a virtual interface to hide the heterogeneity of the used 

devices from the upper layers, improve the way the priorities table is set and add the possibility 

to use several different flavors of Wi-Fi interfaces, in order to increment the total throughput, via 

an aggregation method similar to the one presented by the author of the paper On Effectively 

Exploiting Multiple Wireless Interfaces in Mobile Hosts (Section 2.3.3). 

 Also, it is relevant to highlight that in all the surveyed work, the authors only tested their 

solutions performance in terms of throughput and did not assess the energy being consumed. 

Together with our load-balancing mechanism we have also implemented a power consumption 

algorithm that measures the amount the energy that is being consumed, and determines which 

network interfaces should be used to save the most amount of energy, when the device is 

running on low battery levels. 
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3 Our Proposed Architecture 
 

Nowadays, mobile devices are equipped with several physical interfaces, together with some 

multihoming techniques and load-balancing mechanisms, allowing them to change the interface 

being used according to its availability. As explained in the previous section, there is no solution 

available that provides the user equipment both with the capability to perform multihoming and 

with the capability to use all available interfaces simultaneously to send different traffic flows in a 

balanced and transparent way. 

We implemented a virtual interface that is able to perform load-balancing and also analyze 

each equipment requirements using a priority and a neighboring database table. This virtual 

interface (vi) besides hiding the heterogeneity from the application, aggregates the physical 

interfaces under it in a transparent way, decides which interfaces should be used and if needed, 

will perform the handover in case an interface is no longer available. The architecture of the 

implemented vi will be explained in more detail during the next sections. 

Although we are interested in a generic solution, we take a network that combines different 

flavors of 802.11 as a basis for this thesis, in particular to assist realistic experimentation. 

This section starts by providing an informal description of the environment being targeted. 

Then, a more detailed model for this environment will be presented, capturing the assumptions 

made about the network architecture limitations. Finally, the implemented architecture and 

approach to take, that transparently improves the cost-effective connectivity in heterogeneous 

access networks, will be provided. 

 

3.1 Architecture Model 
 

In terms of architecture, it is divided into 4 main blocks:  

 Virtual Interface;  

 Priority Table; 

 Decider / Virtual Bandwidth Aggregation (VBA); 

 RTT Estimator. 

These blocks will work together under a single kernel module to insure the correct 

distribution of data trough the several existing physical interfaces [33]. Figure 3.1 describes the 

path that the data coming from a certain application takes, until it reaches the physical 

interfaces, passing through our virtual interface.  
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Figure 3.1: Interaction between the implemented mechanisms. 

 

The data coming from and to the application is intercepted by the virtual interface, which will 

check three parameters: the priority, availability and RTT of each interface. Then the Virtual 

Bandwidth Aggregation block (VBA) (cf. section 3.1.1) will decide how to distribute the 

intercepted data between the available physical interfaces (cf. Figure 3.1). 

The VBA and RTT Estimator were created from scratch in order to choose which mechanism 

to use based on the available interfaces, the other two blocks were modified and updated in 

order to properly function with the most recent kernel versions and to correct some problems 

related with the significant overhead that was being added by the hooks placed by the previous 

authors [28][32]. 

 

3.1.1 Virtual Interface 
 

Figure 3.2 illustrates the architecture of the virtual interface (vi) and how it is embedded 

within the network stack. We have the vi hiding the heterogeneity from the application, 

connected to several physical interfaces.  As seen in the figure, the vi will also communicate 

with the virtual bandwidth aggregation block (VBA) which is described afterwards. 
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Figure 3.2: Virtual interface architecture approach. 

 

The virtual interface is similar to the Linux Ethernet Bridge [33]. The vi represents a regular 

layer-two-device and can be configured accordingly and supports any 802.x compatible network 

device, such as a wireless LAN card or a BNEP/Bluetooth connection, while hiding the 

heterogeneity of the used devices from the upper layers. 

The vi also holds an array of possible outgoing interfaces in a neighboring database (NDB), 

similar to the Linux bridge‟s forwarding database. An entry contains a timestamp and is created 

upon receiving the first packet (i.e. a routing broadcast message or a route reply) of the 

associated neighbor/interface pair. Every consecutive incoming packet refreshes the timestamp. 

With this information the vi has a view of all neighbor nodes and the interfaces that are available 

to be used.  

The vi collects information from the priority table to understand select a set of interfaces for 

communication, according to each device‟s needs. It is responsible for deciding on handovers 

and to perform them, switching the traffic from one interface to another using a simple timer. 

 

3.1.2 Virtual Bandwidth Aggregation (VBA) / Decider 
 

The VBA/decider, presented in Figure 3.2, has information concerning the interfaces that can 

be used from the vi, and according to that information, it chooses how the data to be sent, is 

divided between those interfaces. This is the mechanism that will increase the total throughput 

of the device, in comparison with a standard solution, since we are dynamically allocating the 

data we want to send between the existing interfaces. 
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Based in the number of physical interfaces present in a mobile device, their priority and RTT, 

the VBA/decider, decides what to do, in this case which interfaces should be used. Also the 

VBA is also able to monitor the mobile devices power levels and if necessary active a power 

saving mode that will use the interfaces with the lowest energy consumption to send the data. 

The implementation details, and how the decision is taken by the VBA, are explained 

afterwards, in section 3.2. 

 

3.1.3 Priority Table 
 

The priority table specifies a ranking among the interfaces, meaning that whenever a given 

neighbor can be reached through several interfaces, the interface with the highest priority is 

taken, being 0 de highest.  

The default priority is also 0, which means if the user wants a specific interface to be used, 

he has to manually define the priority of each interface. If there are interfaces with the same 

highest priority, all of those can be used simultaneously, since no limitations were set by the 

user (e.g. no preference between Wi-Fi over Bluetooth).  

The information gathered by this table is used by the vi to choose which interfaces should be 

used, as shown in Figure 3.3. In this example there are 3 nodes (A, B and C), node A has 2 

interfaces (Bluetooth and Wi-Fi), node B has also 2 interfaces (Bluetooth and Wi-Fi) and node C 

has only a Bluetooth interface. Each node has a defined priority to each interface and an entry 

in the Neighboring Database (NDB) for each existing neighboring node. In this example, the 

node A, has the same priority for each interface, which means, if both are available, they can be 

used simultaneously. 

 

 

Figure 3.3: The neighboring database (NDB), and the priorities corresponding to each node. 

 

A

C

B Priorities ndb

A Bnep0– 1
Eth1 – 1

B – eth1, bnep0
C – bnep0

B Bnep0– 1
Eth1 – 2

A – eth1, bnep0
C – bnep0

C Bnep0– 1 A – bnep0
B – bnep0
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3.1.4 RTT Estimator 

 

This block is responsible for estimating the average RTT for each physical network interface, 

which will then relay it to the VBA so it can decide which interfaces to use. We use the 

information present in the ACK packages reaching the device to estimate the RTT. This 

information is also used by TCP to calculate the Retransmission Timeout (RTO), this means, 

the amount of time the sender will wait for a given packet to be acknowledged. The estimate is 

based on the traffic leaving the device, and it is done so we can have a clear image of the 

neighboring nodes, and if a certain path used by a physical network interface is congested or 

not. This estimate is made periodically and the values stored in a hash table, so that the VBA 

can easily access this information.  

 

3.1.5 Data Flow - Main Blocks  
 

In this section, before describing the implementation details, we explain the connections, 

inputs and outputs within the main blocks composing the vi module.  

As seen in Figure 3.4 the Virtual Interface receives information from the application layer and 

also from the VBA, which is responsible for deciding which network interfaces should be used. 

The VBA gathers information from three blocks, the priority table, the neighboring database 

(NBD) and the RTT Estimator. With this information it will decide which interfaces are to be 

used. 

The interactions within the blocks are described next, according with the numeration present 

in Figure 3.4 and assuming packets being sent. 

1. Data coming from the application layer to the physical network interfaces is intercepted 

and temporarily stored by the virtual interface. 

2. The VBA receives a request from the virtual interface to choose the physical network 

interfaces to be used in distributing the data intercepted by the virtual interface. 

3. VBA receives the list of available interfaces and associated neighbors from the 

neighboring database (NDB). These neighbors entries are refreshed via the routing 

algorithm control messages which are periodically broadcasted by neighborhood nodes. 

4. VBA receives the priority associated to each physical network interface from the priority 

table. 

5. VBA retrieves the RTT estimation from the RTT Estimator for each available interface 

with the highest priority. 
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6. VBA decides which physical network interfaces should be used and relays this 

information to the virtual interface. 

7. The virtual interface divides the data stored in a temporary buffer and distributes it 

between the physical network interfaces defined by the VBA.   

 

 

Figure 3.4: Data flow, explaining the interactions between the main blocks present in the vi module. 

 

3.2 Implementation Aspects 
 

The previous chapters described the thesis main building blocks, explaining the choices that 

were made in terms of tools to rely upon. This section is dedicated to the contributions of the 

thesis both in terms of concepts, implementation, and analysis. The section goes over specific 
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changes to parameter tuning, installation options and configurations, attempting to explain how 

each block introduced in section 3.1 was implemented. 

The virtual network interface for transparent heterogeneous mobile ad-hoc networks in terms 

of implementation consists of three parts and can be seen in figure 3.5: 

 

1. A kernel module providing the actual network interface; 

2. A library providing programmatic access to the configurable options; 

3. A user space utility to manage virtual interfaces. 

 

 

Figure 3.5: The Virtual Interface Architecture. 

 

The kernel module contains all of the blocks introduced in the previous sections. The library 

and user space gives the user the possibility to configure each virtual interface parameter and 

properties according to their specific needs. This configuration, specific to the virtual interface is 

only available through SysFS (cf. Annex III). The data is intercepted and redirected via Netfilter 

hooks, which will be presented in the following sections. 

 

 

Linux TCP/IP 
Stack

Virtual 
Interface
Module

(vi)

Application

Virtual Interface Userspace Agent

Kernel-space

User-space

Network

Netfilter
Hooks

SysFSSysFS

Driver
Device

Port

Netlink
Socket



31   CHAPTER 3. OUR PROPOSED ARCHITECTURE 

 

 

 

3.2.1 The Kernel Module 
 

The original work [28][32] followed an approach based on the bridge code [29], while this 

work, albeit taking a lot of inspiration out of it, started almost from scratch, since the previous 

version [32] had extensive limitations. The requirements for the module were as follows. 

 Provide the functionality of the original virtual interface, namely: 

o Attach network devices. 

o Maintain a neighbor database. 

o Provide a mechanism capable of performing handover. 

o Provide a broadcast emulation. 

o Configuration via SysFS. 

 No use of custom ioctls. 

 Possibility to use several physical interfaces simultaneously. 

 Intercept the data using Netfilter hooks. 

 Dynamically balance the data between the available physical priorities. 

 Implementation should be as simple as possible. 

 Minimize overhead and handover time. 

 Ability to detect low battery levels and save energy by choosing which network devices 

to use. 

 

In terms of implementation, we first needed to rewrite the previous implementation of the 

virtual interface code [28][32], since it was limited to a very specific version of the Linux kernel, 

and only worked with sysfsutils v1.x [34]. In version 2.x sysfsutils suffered a number of changes 

to the way attributes were populated, another significant change was the removal of struct 

sysfs_directory, which rendered the previous module implementation non operational.  

The second step was to improve the method used to intercept the data, since the previous 

one was too evasive [32]. The hook was placed in the general packet reception routine of a 

network device. Before passing the sk_buff to the upper layers it was checked if it has to be 

passed to a virtual interface. This previous solution added so much overhead to the vi, that the 

total throughput was significantly affected.  

The solution we found was to insert Netlfilter hooks, introduced in the previous section (cf. 

section 2.4.1 ), removing the need to recompile the Kernel with the patch inserted into the dev.c 

file, substantially reducing the overhead added, as we will be seeing in Section 4. 

The next step was to add a new block to the virtual interface, named Decider / Virtual 

Bandwidth Aggregation (VBA). This block is responsible for choosing which physical interfaces 
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to use from the ones behind the virtual interface. The VBA makes this decision based on three 

parameters, the priority and RTT of each interface and their availability according to the 

neighboring database, which contains the available neighbors and the path used to reach them.  

Based on these three parameters, the VBA chooses how the data stored in the 

dev_queue_xmit buffer will be redirected to the available interfaces. For this purpose the 

physical interfaces are transparently aggregated under the virtual interface and a load balancing 

mechanism was implemented to distribute the data between the available interfaces. To do this 

we calculate the RTT of each interface, and use a simple function to calculate a value in the 

form of percentage, for each interface. This value defines the percentage of data intercepted by 

the vi a physical interface is responsible for. By doing this we are dynamically balancing the 

traffic between our physical interfaces, taking in consideration not only their RTT but also the 

paths actually being used. 

The way we aggregate the interfaces under the virtual interface is the same used by the one 

implemented by the Linux bridge [29], where there is an aggregation of several interfaces, and 

the traffic is redirected between them. What was done was an adaptation of the mechanism 

used by Linux Bridge to our virtual interface (cf. section 3.2.1.4), so that it would also work in an 

ad-hoc network environment. 

Additionally, the VBA is also able to monitor the device‟s power levels (the amount of battery 

left and if the device is plugged in to any power adapter), and if needed it will reduce the energy 

consumption by dynamically choosing the interfaces, based on their power consumption and 

throughput, making certain that the device uses the minimum amount of power to send the data. 

This extra function was also created from scratch, allowing the virtual interface to balance the 

data in a different way according to the power level, in order to save some energy. 

The detailed implementation of each block will be presented in the next sections. A complete 

tutorial in how to install and use the virtual interface is also available in the annex section of this 

document (cf. Annex IV). 

 

3.2.1.1 User interface 
 

The network interface exposes its functionality to the network subsystem via well-defined 

interfaces. The configuration specific to the virtual interface is only available through SysFS. 

The following shows which operations the user is able to perform using the files in SysFS. The 

files may be manipulated using cat and echo. 

 Driver – /sys/bus/platform/driver/vi/ 

Show version: version 
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Create a virtual interface: add 

Remove a virtual interface: remove 

 

 Device – /sys/class/net/vi<x>/vi/ 

Attach physical network interface: add 

Detach physical network interface: remove 

Manipulate maxdiff value: Maxdiff 

 Port – /sys/class/net/vi<x>/vi/ports/eth<y>/viport/ & sys/class/net/eth<y>/viport/ 

Manipulate priority: priority 

 

As we can, it is possible to create and remove any number of virtual interfaces, even though 

their names must start with “vi”, so it is possible to differentiate them from the remaining 

interfaces. We can add and remove the physical interfaces from a certain virtual interface and 

set their priorities, which will define the physical interfaces that are to be used.  

In this section a new parameter that is associated with the vi, is also introduced, the so 

called maxdiff threshold. The maxdiff threshold unit is given by formula 3.1 and it decides how 

much two single entries within the neighborhood database may differ in terms of timestamps to 

keep the priority policy up. So a higher ranked interface entry is replaced by a lower priority 

interface if the timestamp differs for more than maxdiff. The 10ms default value has been 

considered due to the guidelines of the previous version [28], where the authors reached the 

conclusion that this was the value the vi would perform better with, in terms of throughput and 

handover time.  

           
  

    
  (3.1) 

 

The other parameters were added to ensure the maxdiff value could vary according with 

each machine‟s system timer frequency, which is represented in the equation by Hz, and by 

default is 1000 Hz [33]. 

 

3.2.1.2 Registering with the Device Model 
 

The driver registers with the platform bus as there is no real bus it belongs to. The driver‟s 

registration is necessary because there needs to be an interface to the driver in order to 

instantiate a virtual interface. This registration is made using the SysFs, described in Annex III; it 

contains device directories with links to the interface‟s drivers.  
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The devices directory contains the global device hierarchy. This contains every physical 

device that has been discovered by the bus types registered with the kernel. It represents them 

in an ancestrally correct way, each device is shown as a subordinate device of the device that it 

is physically (electrically) subordinate to. Via this filesystem the user or system utilities can 

access and modify the parameters of devices and drivers, which is particularly useful in this 

situation, where we have a virtual interface. 

The registration of a new interface is handled by a sysfs handler, using the function 

register_netdevice(device), which receives as input the newly created virtual interface. To delete 

a virtual interface, we use the function unregister_netdevice(device) also from sysfs. 

At initialization time, a device driver allocates a net_device structure and then initializes it 

with its necessary routines. One of these routines, called dev->hard_start_xmit, defines how the 

upper layer should enqueue an sk_buff for transmission. This routine takes an sk_buff. The 

operation of this function is dependent upon the underlying hardware, but commonly the packet 

described by the sk_buff is moved to a hardware ring or queue. 

 

3.2.1.3 Data Interception  
 

In order for the virtual interface to be able to receive the data coming to/from the application, 

it is necessary to intercept the data, which means we need to place a hook somewhere, to 

redirect the data to the virtual interface, and store it in a buffer.  

As presented in [32], a hook into dev.c has shown to be very invasive and not at all flexible, 

causing a significant increase in the overhead added by the virtual interface. Another drawback 

of this solution is that the hook is still active even when the virtual interface is not being used, 

since the system is always checking if it should redirect the data to an existing virtual interface. 

The most promising method we found to intercept the data, was using a custom Netfilter 

target. Such a target can be loaded and unloaded from kernel at any time. A well-understood 

architecture in the kernel and a userspace utility makes Netfilter a powerful tool. The Netfilter 

target for the virtual interface and other known Netfilter targets can also be combined in any 

favored way.  

This hook performs exactly how the hook in dev.c does, but does not requires any 

modification to the Linux base files, and therefore there is no need to recompile the Kernel, with 

the modified version of the dev.c file, and it is only active when we are using the virtual interface 

module. 
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Packets will pass through hooking points sequentially. On each hooking point, it is possible 

to configure some filtering rules via the iptables command. After packets pass through 

NF_IP_PRE_ROUTING, the Linux kernel makes the routing decision to decide whether packets 

should enter the local processes or be routed to the next hop through the virtual interface and 

then redirected to a certain physical interface (this is decided by the decider, which will be 

described in section 3.2.1.7). In order to implement the Netfilter hooks, some major 

modifications were needed.  

The Netfilter hook is created by the net_hook function, and registered using 

nf_register_hook. By adding the hook, we are intercepting and storing each data flow in a 

temporary buffer (dev_queue_xmit), while the virtual interface decides to which interface(s) it 

should be redirected to.  

 

3.2.1.4 The Neighbor Database 
 

The neighbor database is a hash table with the hash function calculated on the MAC 

address. A linked list for each hash value contains the entries corresponding to neighbors (cf. 

Figure 3.6 for a simplified representation of the neighbor database). The structure of a neighbor 

entry can be seen in listing 3.1.   

01     struct net_vi_ndb_entry 

02  { 

03    struct hlist_node  hlist; 

04    atomic_t         use_count; 

05    struct mac_addr  addr; 

06    struct net_vi_port  *dst; 

07    struct rcu_head  rcu; 

08    unsigned long        ts; 

09    unsigned         is_local:1; 

10  }; 

Listing 3.1: Structure net_vi_ndb_entry. 

 

 

 

 

 

Figure 3.6: The neighbor database (simplified). 
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Let us now take a closer look at how routes get established in a heterogeneous mobile ad-

hoc network when using virtual interfaces. In the case of a reactive routing protocol, it is the 

application that triggers a path setup. Since there is no route available yet, the routing protocol 

typically first broadcasts a route request. At the very beginning the neighboring database 

contains no entries but the transmission of a broadcast packet does not need any neighborhood 

information anyway. After the route request has passed several hops, a route reply eventually 

returns back to the origin. The route reply not only establishes the route but also creates an 

entry within the neighboring database, providing the vi with information on the interface to which 

the packets to the given neighbor have to be transmitted. 

In the case of a pro-active routing protocol, things are slightly different. Here nodes 

periodically broadcast their neighboring information and therefore are also creating entries 

within neighborhood database. In both cases (proactive and reactive) the NDB entry is 

established in combination with the new route, regardless of whether the MAC technology 

changes or not. 

The fields of this structure are used as follows: 

 hlist (The linked list); 

 use_count (An atomic reference counter); 

 addr (The address of the neighbor. Local devices are neighbors, too); 

 dst (The port through which a neighbor is reached); 

 rcu (Structure for the RCU-mechanism. This is used for adding and removing entries); 

 ts (A timestamp. The difference of such timestamps are compared with the maxdiff 

value); 

 is_local (As mentioned, local devices are neighbors, too. This field differentiates 

between them and real neighbors). 

 

Insertion  

The function to insert and update entries into the neighbor database is the same. First, the 

hash table is searched for a matching entry. If one is found, it is updated; otherwise a new entry 

is created. The update sets the timestamp to the kernel time jiffies1. 

 

                                                           

1 A jiffy is the duration of one tick of the system timer interrupt. It is not an absolute time interval unit, since its 

duration depends on the clock interrupt frequency of the particular hardware platform. 
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Outgoing link selection  

Outgoing links are selected according to the available neighboring nodes, present in the 

neighboring database. First we check if there is any available neighbor, if not, then the network 

interface cannot be used. After knowing which network interfaces can be used, the VBA decides 

which ones to use, based on their priorities and RTT estimation.  

This structure is used to store the information of the available neighbors in an ad-hoc 

network, particularly the available nodes and which interface should be used to establish a 

connection with a certain node. We also added the possibility to use the virtual interface in a 

non ad-hoc scenario, which widens the possible scenarios the vi can be used in. This was done 

by adding the possibility to dynamically change the MAC of the virtual interface, so the packets 

coming from/to the vi would not be discarded, removing the necessity to have the Wi-Fi 

interfaces in promiscuous mode, which was a major drawback in the previous versions, since 

most of the Wi-Fi drivers does not support it.  

 

3.2.1.5 Processing Incoming Packets 
 

Incoming packets reach the virtual interface through the Netfilter hook. First, the sender‟s 

entry in the neighbor database is updated or created, and then the packet is passed up if: 

 The virtual interface is in promiscuous mode. 

 The packet was sent to the broadcast address. 

 The destination address is the local address. 

 The destination address belongs to one of the ports. 

 

Listing 3.2 shows the several checking conditions in a simplified manner, used to verify if the 

packets are to be passed up. If all of them fail, then the packets are dropped. 

Receiving a packet is performed with netif_rx. When a lower-level device driver receives a 

packet (contained within an allocated sk_buff), the sk_buff is passed up to the network layer 

through a call to netif_rx. This function then queues the sk_buff to an upper-layer protocol's 

queue for further processing through netif_rx_schedule. Both dev_queue_xmit and netif_rx 

functions can be found in linux/net/core/dev.c. 

01     /* 

02   *  pass up all frames if virtual interface in promiscuous mode  

03   */ 

04  if(vi->dev->flags & IFF_PROMISC) {… 

05           vi_pass_frame_up(vi, skb)  

06         …} 

07   

08  
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09  /* 

10   *  pass up broadcast frame  

11   */ 

12  if(dest[0] & 1){… 

13           vi_pass_frame_up(vi, skb)  

14         …} 

15  

16  

17  /*  

18   *  pass up local frame  

19   */ 

20  if (mac_match(dest, vi->dev->dev_addr)) {… 

21           vi_pass_frame_up(vi, skb)  

22         …} 

23  

24   

25  /* 

26   *  pass up frames sent to one of the added interfaces (ports)  

27   */ 

28  dst = __vi_ndb_get(vi, dest); 

29  if (dst != NULL && dst->is_local) {… 

30           vi_pass_frame_up(vi, skb)  

31         …} 

Listing 3.2: Handling incoming frames (simplified). 

 

3.2.1.6 Processing Outgoing Packets 
 

Outgoing packets reach the virtual interface through the hard_start_xmit hook of the network 

device default interface. A packet is sent according to the following policy: 

 

 Broadcast packet  

o Transmit over all attached interfaces; 

 Normal packet; 

o Neighbor known: transmit over the corresponding outgoing link; 

o Neighbor unknown: transmit over all attached interfaces; 

As we can see in Listing 3.3, there are two types of packets, broadcast and normal. 

Broadcasting is more frequent in ad-hoc networks than in wired networks, especially as the 

basic vehicle for on-demand route discovery. So, if the type is broadcast or we cannot find a 

certain neighbor in the neighboring database, the packet is transmitted over all attached 

interfaces. If not, then it is transmitted to a known neighbor over a certain outgoing link, present 

in the neighboring database, according with the policies set by the decider, which is described 

in the next section (cf. section 3.2.1.7). 

To send a sk_buff from the protocol layer to a device, the dev_queue_xmit function is used. 

This function enqueues a sk_buff for eventual transmission by the underlying device driver (with 

the network device being defined by the net_device or sk_buff->dev reference in the sk_buff). 
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The dev structure contains a method, called hard_start_xmit, that holds the driver function for 

initiating transmission of a sk_buff. 

This is a large structure containing all the control information required for the packet. Struct 

sk_buff has fields to point to the specific network layer headers:  

 transport_header (previously called h) – for layer 4, the transport layer (can include 

TCP, UDP or ICMP header, and more);  

 network_header – (previously called nh) for layer 3, the network layer (can include IP, 

IPv6 or ARP header);  

 mac_header – (previously called mac) for layer 2, the link layer.  

 skb_network_header(skb), skb_transport_header(skb) and skb_mac_header(skb) 

return pointer to the header.  

 

01     /* 

02   broadcast packet 

03  */ 

04  static void vi_flood_deliver(struct net_vi *vi, struct sk_buff *skb) 

05  {...} 

06  

07  

08  /* 

09   transmit packet. Net_device default interface 

10  */ 

11  int vi_dev_xmit(struct sk_buff *skb, struct net_device *dev) 

12  {...} 

Listing 3.3: Handling outgoing frames (simplified). 

 

3.2.1.7 Decider / Virtual Bandwidth Aggregation (VBA)  
 

The VBA is responsible for choosing how the data, we want to send, is divided between the 

available interfaces. This is the mechanism, within our solution, that was created from scratch 

and shall increase the total throughput, in comparison with a basic setup, without the virtual 

interface, since we are transparently aggregating the available interfaces under the vi and 

dynamically allocating the data we want to send between the existing interfaces. 

As mentioned before, there are several steps the vi must complete before choosing how to 

divide the data between the physical interfaces. First it is necessary to check three parameters: 

 Priority;  

 Availability; 

 Round Trip Time (RTT). 
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Priority 

To store the priority of each physical interface, we created a simple hash table that stores 

the names of each physical interface within a certain virtual interface, and their corresponding 

priorities. The access to the priority table is done in order do find all the physical interfaces with 

the highest priority, being 0 the highest (0 is also the default value for any physical interface that 

is added to a virtual interface). This is done using a simple function that accesses the priority 

table, and returns a list with all the highest “rated” interfaces. With this information we know 

which interfaces the user wants to prioritize.  

 

Availability 

The availability of each interface can be verified by using the information stored in the 

neighboring database, introduced in the previous section. In this hash table we have all the 

neighbor nodes, and which interfaces can be used to reach them. Since this table is constantly 

being updated by the routing protocol, we can use this information to check if the interfaces do 

in fact have any available path to the destination address.  

This metric is verified so that one interface is not used when there are no available neighbors 

for it to transfer the data. In listing 3.4, we present a simplified version of the function used to 

check the neighboring database for a positive match. If a valid path is found for a specific 

physical interface it returns “0”, if there is not any, the function returns “-1”.  

 

01  int vi_ndb_find(const struct net_vi *vi,const struct net_vi_port * port) 

02  { 

03   int I; 

04   struct net_vi_ndb_entry *ndb; 

05   struct hlist_node *h; 

06   //rcu_read_lock(); 

07   for(I = 0; I < VI_HASH_SIZE; i++) 

08   { 

09    hlist_for_each_entry_rcu(ndb, h, &vi->hash[i], hlist) 

10    { 

11  

12     if (ndb->dst == port) 

13        { 

14         //rcu_read_unlock(); 

15      return 0; 

16        } 

17      

18    } 

19   } 

20    //rcu_read_unlock(); 

21   return -1; 

22    

23    

24  } 

Listing 3.4: Availability of an interface. 
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TCP Round-Trip Time (RTT) estimation 

After knowing which interfaces to use and their availability, it is necessary to calculate the 

Round-Trip Time (RTT) of each physical interface.  

For this purpose and since TCP continuously estimates the current RTT of every active 

connection in order to find a suitable value for the retransmission time-out, we implemented a 

mechanism capable of calculating the RTT using TCP‟s periodic timer. Each time the periodic 

timer fires, it increments a counter for each connection that has unacknowledged data in the 

network.  

 

Figure 3.7: TCP/IP input processing. 

 

For every data stream sent using TCP there is an acknowledge response that reaches the 

mobile device, these packets are intercepted by the Virtual Interface, which will then extract the 

RTT estimation. Figure 3.7 shows how packets enter the network device, pass through the 

TCP/IP stack, are intercepted by the Virtual Interface Module and then are delivered to the 

actual applications. In this example there are five active connections, three that are handled by 

a web server application, one that is handled by the e-mail sender application and one that is 

handled by a data logger application.  

TCP implementations attempt to predict future round-trip times by sampling the behavior of 

packets sent over a connection and averaging those samples into a Smooth Round-Trip Time 

estimate (SRTT). When a packet is sent over a TCP connection, the sender times how long it 

takes for it to be acknowledged, producing a sequence of round-trip samples: S(1), S(2), S(3), 

…  

With each new sample Si, the new SRTT is computed as [36][37]: 

                                (3.2) 
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Where SRTT(i) is the current estimate of the round-trip time, SRTT(i+1) is the new computed 

value, and α is a constant between 0 and 1 that control how rapidly the SRTT adapts to 

changes (usually α=1/8).  

By applying formula 3.2 with the information extracted from the ACK packets constantly 

arriving, we are capable of estimating the average RTT values for each physical interface, 

without producing additional data [33]. This estimation is solely based on packets being 

transmitted by the applications located behind the virtual interface. 

Additionally, the information regarding each interface‟s RTT is stored persistently in the 

format of a hash table, so that the VBA can easily access this information, and use it in function 

3.3 to calculate the percentage assigned for each interface, which indicates how much data, 

within each traffic flow, the interface is responsible for. 

 

Data division 

The RTT estimation is only made from time to time (approximately each 5 seconds), but the 

function 3.3 which was created to balance the data in a proportionate way through the several 

physical interfaces, is executed for each data flow that is intercepted by the virtual interface. 

 

    
 

        
 

    
  

   

   (3.3) 

The PIa is the percentage a certain interface should be used to transfer the data intercepted 

by the vi and its value is between [0, 1]. The sum of all PI‟s must be one and it is calculated for 

every single available interface with the highest priority. The RTT is the Round-Trip Time of a 

certain interface and the summation interval is between 1 and n, being n the total number of 

available physical interfaces with the highest priority. 

 

When a virtual interface is first created, and several interfaces are added, the table 

containing the results from formula 3.3 is empty. For this matter we use function 3.4, which uses 

the bandwidth from each interface, as a metric, to calculate the necessary proportions that will 

be used to calculate the amount of data each physical interface is responsible for, within a 

certain data flow.  



43   CHAPTER 3. OUR PROPOSED ARCHITECTURE 

 

 

 

Note that this is only temporarily; function 3.4 is only applied if the RTT metric fails. Meaning 

there is not enough available information regarding the RTT estimation of every physical 

interface.  

    
          

             
 
   

  (3.4) 

 

Again, the PIa is the percentage a certain interface should be used to transfer the data 

intercepted by the vi and its value is between [0, 1]. The sum of all PI‟s must be one and it is 

calculated for every single available interface. The Bandwidth values are acquired via SysFS 

and the summation interval is between 1 and n, being n the total number of available physical 

interfaces. The values acquired by this function, are only used if there is at least one or more 

interfaces whose RTT values were not calculated yet, since the bandwidth used for this 

calculation is not the actual throughput (does not take into consideration, the path being used by 

the physical interfaces). 

 

Load Balancing 

After calculating all the PI‟s, the VBA will now redirect the data to the physical interfaces, 

taking into consideration the obtained values.  

Note that each interface has an assigned percentage, and the sum of the percentages of all 

available interfaces is 100%. So if for example we have 10Mb to transfer and 2 available 

interfaces (eth0 and eth01), eth0 has a percentage of 20% (PI = 0,2) and eth1 has 80% (PI = 

0,8), this means that eth0 will transfer approximately 2Mb while eth1 transfers 8Mb. 

In comparison with the previous versions [28][32], where the authors only used priorities to 

divide the data between the physical interfaces, we are now using a dynamic load balancing 

mechanism since we are dynamically allocating the data through the existing interfaces. By 

implementing such mechanism we are also making sure that no bottlenecks are being created, 

since by taking into consideration the actual RTT value for each interface, we are not only 

analyzing each interface‟s throughput but also the path actually being used by all available 

interfaces with the highest priority. 

To better explain all the methods VBA has to offer and how it distributes the data between 

the available physical interfaces, simplifying the whole implementation description, we can 

divide the available options into two modes of operation: 
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 Mode I – 1 Physical Interface 

There is only one interface with the highest priority, being 0 the highest. Only one interface 

is used at a certain time to send the data. If that interface goes down, then the VBA uses 

the interface with the second highest priority. If by any case the VBA cannot find any 

available path, in the neighboring database, then the virtual interface will transmit the data 

coming from the application via broadcast mode, through all the interfaces present in the 

device, to assure that it will reach its final destination; 

 

 Mode II – 2 or more Physical Interfaces 

If there are several interfaces with the highest priority, all those interfaces are used, and a 

load balancing mechanism is applied to distribute the data trough all the available 

interfaces. If all interfaces go down, except one, then the VBA goes into Mode I. The load 

balancing mechanism, divides the intercepted data, stored in the buffer, between all the 

available interfaces. This mechanism is only applied to interfaces with the same priority, 

and the amount of data an interface is responsible for sending is calculated using either 

formula 3.3 or formula 3.4, depending if the table containing the RTT values is empty or 

not.  

 

Energy Consumption  

The VBA is also responsible for monitoring the energy power levels, foreseeing the necessity 

of saving energy, by using the best suited interfaces. We do this by accessing the files present 

in the /proc/acpi/battery directory, which stores information regarding the actual battery status of 

the device. We extract the power level and information that tell us if the device is connected or 

not to any power adapter. This information can also be accessed parsing the information 

returned by the command acpi –a. 

If the battery level is below 10% and if the mobile device is not plugged in to any power 

adapter then the power saving mode is activated. This mechanism is described in the next 

section. 

 

3.2.2 Power Saving Mode 
 

This mode as mentioned before is only activated if the battery level is below 10% and if the 

mobile device is not plugged in to any power adapter. The VBA is responsible for monitoring 

both values, and will activate this mode to insure, that the data will be transferred while 
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consuming the minimum amount of power possible. This verification is made by de VBA every 

120 seconds. 

The function used to distribute the data between the physical interfaces is similar to the one 

presented in the previous section (formula 3.3). It takes into consideration the RTT values, in 

order to extrapolate the throughput and the energy consumption of each interface. Based on 

these two parameters we find the solution that consumes the least amount of energy to send 

the data. 

For example, if we have one interface with a lower energy consumption than the remaining, 

that does not mean it will consume less energy to send a certain data flow. We have to take in 

consideration its throughput, verify how long it will take to transfer the data and during that time, 

how much energy those interfaces will consume. 

 

Throughput  

The Throughput is measured in bits per second, it is estimated based on the RTT 

measurements and it is calculated using formula 3.5. Note that by default the TCP Buffer size 

>= TCP Window size. Typical TCP window size is equal to 64 Kbyte, and the RTT is measured 

in seconds [38].  

The value we obtain in formula 3.5 is a theoretical value of the throughput. It is calculated in 

order to estimate the energy consumption of a certain interface and is used in formula 3.6.  To 

simplify the calculation we are assuming a packet loss of 0%, since the obtained values are 

merely for comparison reasons, so we can understand which interfaces use the most amount of 

energy to send a certain data flow.  

 

            
               

   
  (3.5) 

 

Energy Consumption per packet 

When a node sends or receives a packet, the associated network interface, decrements the 

available energy according to the following parameters: (a) the specific network interface 

controller (NIC) characteristics, (b) the size of the packets and (c) the bandwidth used. The 

following formula represents the energy used (in Joules) when a packet is transmitted or 

received (Formula 3.6) and the packet size is represented in bits [38]: 

 



46   CHAPTER 3. OUR PROPOSED ARCHITECTURE 

 

 

 

              
                                           

          
   (3.6)  

The energy consumption is measured in miliamperes (mA), varies with the interface being 

used and if a packet is being transmitted or received. The energy supply also varies with the 

device being used and is measured in Volts (V). 

Although the equipment consumes energy, not only when sending and receiving but also 

when listening, we have assumed in our model that the listen operation is energy free, since all 

the evaluated ad-hoc routing protocols will have similar energy consumption due to the node 

idle time.  

 

Energy Consumption per data flow 

After knowing how much energy a network interface requires for sending a packet, we can 

now calculate if the current set up, defined by the VBA is consuming the least amount of energy 

to send a certain data flow. For that we use formula 3.7, representing the energy consumed 

during the transmission of the data present in the output buffer (in Joules). The BufferSize and 

PacketSize are both represented in bits and the summation interval is between 1 and n, being n 

the total number of available physical interfaces with the highest priority. The PI represents the 

value calculated in either formula 3.3 or formula 3.4 and Energy represents the energy used (in 

Joules) when a packet is transmitted, and it is calculated in formula 3.7 [38]. 

 

                    
          

          
               

 
     (3.7) 

Now we need to compare the acquired energy consumed value with the energy the interface 

with the lowest energy consumption would require for sending the same amount of data. For 

that we use formula 3.8. The parameters are the same as the ones in formula 3.7, but now we 

are only taking in consideration one interface, not all the interfaces present in the mobile device. 

 

                  
          

          
          (3.8) 

 

After acquiring this second value we compare both energy results, and verify if 

EnergyConsumedVBA ≥ EnergyConsumedI. If this is the case, then the VBA will only use the 

interface with the lowest energy consumption to transmit the data flow, since it will consume 

less energy.   
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3.2.3 The libvi library 

 

This library provides the interface given in listing 3.5. The library uses libsysfs [42] to access 

the virtual files in the SysFS to configure the virtual interface. Before actually using the functions 

provided by libvi it has to be initialized by calling vi_init. This is one of the two possible ways to 

configure the virtual interface; the second one is presented in the next section. 

 

01  int vi_init(void) 

02  { 

03   vi_class_net = sysfs_open_class("net"); 

04   return 0; 

05  } 

06  

07  int vi_addvi(const char *name); 

08  

09  int vi_delvi(const char *name); 

10  

11  int vi_addif(const char *vi, const char *ifname); 

12  

13  int vi_delif(const char *vi, const char *ifname); 

14  

15  int vi_set_portpriority(const char *ifname, unsigned long prio); 

16  

17  int vi_set_maxdiff(const char *vi, unsigned long maxdiff); 

18  

19  int vi_get_portpriority(const char *ifname, unsigned long *prio); 

20  

21  int vi_get_maxdiff(const char *vi, unsigned long *maxdiff); 

Listing 3.5: Virtual interface configuration library. 

 

3.2.4 The victl command 

 

The victl command is a command-line utility which uses libvi to manage virtual interfaces. If 

victl is run without parameters it displays a help message which explains how to use it. Listing 

3.6 shows the available commands showed upon running the command victl without 

parameters:  

 addvi - Create a virtual interface; 

 delvi - Remove a virtual interface; 

 addif - Attach physical network interface to an existing virtual interface; 

 delif - Detach physical network interface from an existing virtual interface; 

 setmaxdiff - Manipulate maxdiff value; 

 setportprio - Manipulate priority from a certain physical interface. 
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[root@mota]# victl  

commands: 

help command list 

addvi <vi> add vi 

delvi <vi> delete vi 

addif <vi> <device> add interface to the vi 

delif <vi> <device> del interface from the vi 

setmaxdiff <vi> <maxdiff> set maxdiff 

setportprio <vi> <port> <prio> set port priority 

 

[root@mota]# victl add vi0 

[root@mota]# victl addif vi0 wlan0 

[root@mota]# victl setprio vi0 wlan0 1 

[root@mota]# victl addif wlan1 

[root@mota]# victl setprio vi0 wlan1 1 

[root@mota]# ifconfig wlan0 0.0.0.0 

[root@mota]# ifconfig wlan1 192.168.2.1 

[root@mota]# victl setdiff 200 

[root@mota]# ifconfig 

 

wlan0 Link encap:Ethernet HWaddr 00:02:72:B2:78:D2 

UP BROADCAST RUNNING MULTICAST MTU:1500 

RX packets:0 errors:0 dropped:0 overruns:0 

TX packets:4 errors:0 dropped:0 overruns:0 

collision:0 txqueuelen:100 

RX bytes:104 (104.0 b) TX bytes:88 (88.0 b) 

 

wlan1 Link encap:Ethernet HWaddr 00:02:2D:7B:88:D1 

UP BROADCAST RUNNING MULTICAST MTU:1500 

RX packets:1093 errors:277 dropped:0 overruns:0 

TX packets:51 errors:0 dropped:0 overruns:0 

collision:0 txqueuelen:100 

RX bytes:65778 {64.2 Kb} TX bytes:11386 

Interrupt:11 Base address:0x100 

 

vi0 Link encap:Ethernet HWaddr 00:02:72:B2:78:DC 

inet addr:192.168.2.1 Bcast:192.168.2.255 

UP BROADCAST RUNNING MULTICAST MTU:1500 

RX packets:0 errors:0 dropped:0 overruns:0 

TX packets:0 errors:0 dropped:0 overruns:0 

collisions:0 txqueuelen:0 

RX bytes:0 (0.0 b) TX bytes:0 (0.0 b) 

Listing 3.6: The victl command. 

 

By running the command dmesg it is possible to debug the module, and see step by step 

what actions is the virtual interface executing. In listing 3.7 we have an example, were two 

interfaces, wlan0 and wlan1 were added to the virtual interface vi0. In this example we can 

clearly see the vi finding a match in the neighboring database and using both wlan0 and wlan1 

to send and receive the data coming from and to the application layer.  

01 [ 2406.936061] debug.vi: sending interface index=0 

02 [ 2406.936066] debug.vi: deliver packet through wlan1 

03 [ 2406.936560] debug.vi: handle_frame 

04 [ 2406.936566] debug.vi: entering vi_ndb_insert 

05 [ 2406.936570] debug.vi: entering ndb_insert 

06 [ 2406.936574] debug.vi: ndb_insert, hash: 147 

07 [ 2406.936578] debug.vi: ndb_insert looking for existing entries 

08 [ 2406.936583] debug.vi: ndb_insert, found matching entry 

09 [ 2406.936588] debug.vi: ndb_insert, update existing entry 

10 [ 2406.936592] debug.vi: ndb_insert, done 
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11 [ 2406.936595] debug.vi: leaving vi_ndb_insert 

12 [ 2406.936599] debug.vi: handle_frame_finish 

13 [ 2406.936603] debug.vi: passing up local frame 

14 [ 2406.936608] debug.vi: pass_frame_up from wlan1 to vi0 

15 [ 2406.936612] debug.vi: frame passed up 

16 [ 2406.936616] debug.vi: leaving handle_frame_finish 

17 [ 2406.936636] debug.vi: vi_loading_blance_policy return sending interface index=0 

18 [ 2406.936641] debug.vi: sending interface index=0 

19 [ 2406.936645] debug.vi: deliver packet through wlan0 

20 [ 2407.942201] debug.vi: vi_loading_blance_policy return sending interface index=0 

21 [ 2407.942209] debug.vi: sending interface index=0 

22 [ 2407.942214] debug.vi: deliver packet through wlan0 

23 [ 2408.950183] debug.vi: vi_loading_blance_policy return sending interface index=1 

24 [ 2408.950191] debug.vi: sending interface index=1 

25 [ 2408.950196] debug.vi: deliver packet through wlan1 

26 [ 2409.061191] debug.vi: vi_loading_blance_policy return sending interface index=1 

27 [ 2409.061197] debug.vi: sending interface index=1 

28 [ 2409.061202] debug.vi: deliver packet through wlan1 

29 [ 2409.156279] debug.vi: vi_loading_blance_policy return sending interface index=1 

30 [ 2409.156286] debug.vi: sending interface index=1 

31 [ 2409.156291] debug.vi: deliver packet through wlan1 

Listing 3.7: Debugging the virtual interface module.  

 

3.3 Limitations 
 

During the implementation and testing of the vi module, some limitations were found, 

unfortunately due to time constraints we could not solve them all, the ones that still apply are 

presented next.  

The first identified problem was that the vi module will only work if the access points to which 

the network interfaces are connected to, are in the same network, since the virtual interface can 

only have a single IP address at a given time. So the usage of this module is limited to an ad-

hoc scenario or to a situation where there are several APs, all under the same network (e.g. 

Campus University network). 

Another limitation that was identified is that by adding the hooks to intercept the data, we are 

also adding a regular timer tick, The timer tick is a timer interrupt that is usually generated HZ 

(Hertz) times per second, with the value of HZ being set at compile time and varying between 

around 100 to 1500. Running without a timer tick means the kernel does less work when idle 

and can potentially save power because it does not have to wake up regularly just to service the 

timer, and since we are adding such interrupt, this means the kernel will not go into idle, and will 

not be able to save as much energy as it would. Figure 3.8 shows what processes/drivers are 

keeping the mobile device active. As we can see the vi module is one of the main causes for 

wakeups (16.2%), taking a toll in the mobile devices energy savings, when in idle. 
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Figure 3.8: Kernel main causes for wakeups, measured with PowerTop1. 

 

We considered that the energy consumption of a certain interface when in idle time is zero, 

which is not actually true. For a more correct approach the energy a certain interface is using 

when in idle, should be taken in consideration in the used algorithm. It would be interesting to 

make such modification and compare the results, so that we could understand if there is actually 

any impact in the amount of energy saved by the power saving mechanism implemented within 

the vi module. 

Finally, the vi module will only work with physical interfaces using the following network 

standards: 

 IEEE 802.11/WLAN; 

 IEEE 802.15/Bluetooth; 

 IEEE 802.3/Ethernet. 

 

 

 

 

                                                           

1 PowerTop, http://www.lesswatts.org/projects/powertop/ 
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3.4 Security Concerns and Other Aspects 
 

The broadcasting nature of transmission and the nodes self routing environment opens up 

the perception of security in ad-hoc networks. The security issue of ad-hoc is of large concern 

taking into account its various factors like its open network, mobility factor and other factors. In 

this section we address some of this security concerns and since the security behind the 

module is out of scope of this thesis, we merely identify possible issues and propose some 

solutions intended to solve them.  

The first identified problem is related with the way we estimate RTT. The RTT estimation is 

made based on the data that is entering the device via the available network interfaces, if there 

is an attacker placed between the device and a certain AP, he could alter the values present in 

the ACK packets used by TCP to estimate the RTT, which will then affect the way we choose 

the physical interfaces. The RTT estimator will take the RTT information out of the packets 

entering the mobile device, and since these values were altered by the attacker, we are actually 

basing our decisions in values that are not reliable. 

The second attack that was indentified may also affect the decision of the VBA. If an attacker 

is able to fake the periodically messages sent by the routing protocol, which we use to update 

the neighboring database, then the VBA will think that interface is active. This attack will cause 

the virtual interface to send data to physical network interfaces that have no available 

neighbors. 

Both identified attacks can be performed by the method known as Man-In-The-Middle, where 

attackers intrude into an existing connection to intercept the exchanged data and inject false 

information. It involves eavesdropping on a connection, intruding into a connection, intercepting 

messages, and selectively modifying data. 

In order to provide solutions to the security issues involved in ad-hoc networks, we must 

elaborate on the two of the most commonly used approaches in use today: 

• Prevention 

• Detection and Reaction 

Prevention dictates solutions that are designed such that malicious nodes are thwarted from 

actively initiating attacks. Prevention mechanisms require encryption techniques to provide 

authentication, confidentiality, integrity and non-repudiation of routing information. Among the 

existing preventive approaches, some proposals use symmetric algorithms, some use 

asymmetric algorithms, while the others use one-way hashing, each having different trade-offs 

and goals. 
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Prevention mechanisms, by themselves cannot ensure complete cooperation among nodes 

in the network. Detection on the other hand specifics solutions that attempt to identify clues of 

any malicious activity in the network and take punitive actions against such nodes 

The first attack can be mitigated by measuring the RTT using a different approach. Instead 

of basing our RTT estimation in the TCP traffic entering the device, we can create and send 

ICMP packets via all network interfaces. The messages being sent must be encrypted and 

signed, so that we can verify their integrity and authenticity. This method will give us a more 

correct reading in terms of RTT but we are also adding additional overhead. Other problem that 

might also occur with this solution is firewalls blocking ICMP packets, being this the main reason 

why we opted for the lesser secure but more efficient method of estimating the RTT.  

One way of lessen the impact of the second attack, is to periodically send encrypted packets 

(for example crypto puzzles) to all available neighbors and wait for a response. A crypto puzzle 

is a quickly computable cryptographic problem formulated using the time, a server secret, and 

additional client request information. In order to have server resources allocated to it for a 

connection, the client must submit to the server a correct solution to the puzzle it has been 

given. If we get a response from a certain neighbor it means that the interface has in fact 

available neighbors to which it can send the data.   
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4 Performance Evaluation 
 

This chapter is dedicated to the performance evaluation of the main building blocks of this 

thesis, attempting to answer the questions that lead to this work and that can be aggregated 

into three main aspects: 

 Is the overhead added by the virtual interface excessive?  

 Are the implemented mechanisms improving the total throughput? If yes, in which 

situations? 

 Is the power consumption mechanism, present in the vi module, saving any energy? 

 

Answers to these questions are provided by relying on several experimental sets, where the 

number of access points, interfaces, and also the type of data flows was varied. 

The neighbor database look-up and the detour the packets have to take naturally impair 

throughput. So, the performance of the virtual interface was measured according to throughput, 

overhead time and also Handover-time in case of a vanishing link, since packets can get lost.  

The chapter starts by detailing the goals for the experiments, and the followed methodology. 

A generic description of the evaluation parameters and scenarios is then provided, followed by a 

description of the topologies implemented, and of the traffic settings as applied to the 

experiments. Section 4.2 explains in a detailed manner the results obtained during the 

experiments and which refer to packet loss, energy consumption, as well as end-to-end delay 

and total throughput. Finally, section 4.3 summarizes the results obtained in the test 

experiments and answers the questions presented above.  

 

4.1 Evaluation Objectives and Settings 
 

 

The experiments presented in this section have as main goal to analyze the virtual interface 

vs. normal scenario (without virtual interface) in terms of end-to-end delay, packet jitter, as well 

as packet loss and total throughput. For a specific IP datagram х, the end-to-end delay      is 

defined as the time it takes for the packet to travel from source to destination, i.e. the interval 

between the time the packet was sent and the time it was received [4], as in equation 4.1. 

                  (4.1) 
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Where       and       represent the time at which packet   was received and transmitted, 

respectively. 

The inter-packet delay is defined as the variation between the delays of two consecutive 

packets. For two consecutive packets, x and y, x being the first packet received, the inter-packet 

delay is defined in equation 4.2. 

                 (4.2) 

 

Packet loss, P, is here defined as the ratio between the number of lost packets and the 

number of packets that were sent, not counting the packets received out-of-order. This 

computation is performed based on the sequence number of the packets received. For every 

flow, the expected packet sequence number is kept, and if the received sequence number is 

higher than the expected, then the total number of lost packets is incremented. Packet loss is 

expressed in percentage, according to equation 4.4. 

  
 

 
      (4.4) 

Where N is the number of total packets that were sent by the source node and L is the 

number of packets that did not reach the destination node.  

 

Throughput, T, is here defined as the ratio between the RCV buffer size and the RTT 

(Round-trip time) [37]. Hence, total throughput is calculated as described in equation 4.5.  

Throughput is expressed in Mbps, the RTT in seconds and the buffer size in Megabits. 

  
               

   
  (4.5) 

 

Energy consumption, given by W, is here defined as is the rate at which work is done when 

one ampere (A) of current flows through an electrical potential difference of one volt (V). Energy 

consumption is expressed in milliwatt hour (mWh), according to equation 4.6. 

       (4.6) 

A milliwatt-hour is the amount of energy equivalent to a steady power of 1 milliwatt running 

for 1 hour. 

 

 

http://en.wikipedia.org/wiki/Ampere
http://en.wikipedia.org/wiki/Potential_difference
http://en.wikipedia.org/wiki/Volt
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4.1.1 Traffic and Network Settings 
 

The traffic used in the simulations was generated by relying on iperf1, since it is supported by 

both Linux and Windows operating systems, via its graphical component jperf2 . It is more 

focused on measuring the network available bandwidth, capable of measuring bandwidth and 

datagram loss, it also presents the results of jitter and RTT. Additionally it is also possible to 

specify a traffic type, TCP or UDP, although it is not possible to specify the traffic pattern. To 

evaluate the overhead and handover time, we used the command ping. 

For each test, in terms of measuring the available bandwidth we also tested different packet 

sizes, which are important to determine the per-packet overhead. The values are averaged over 

20 readings and each reading takes 100 seconds to acquire (except the handover time that 

requires only the number of packets lost while handover is occurring). 

All readings were taken on a laptop Sony Vaio PCG-7N2M. A Tsunami desktop computer 

using Windows Vista operating system was also used as server. The access points used in the 

experiments were routers Fonera+3, flashed with the Linux based firmware DD-WRT4.  

 Sony Vaio PCG-7N2M 

o Memory: 1GB 

o Intel® Centrino Core™ Duo T2300 Processor 1.66 GHz 

o Ubuntu, Linux 2.16.31.14 

o Virtual Interface Module v2.0 

o Wi-Fi interface 1: Integrated wireless 802.11a/b/g 

o Wi-Fi interface 2 (usb): D-Link DWL-G122 High Speed 2.4GHz (802.11a/b/g) 

o Wi-Fi interface 3 (usb): D-Link DWL-122 (802.11b) 

o Iperf client 

 

 Tsunami Desktop  

o Memory: 3GB 

o Intel® Core™ i7 CPU 920 @ 2.67GHz 

o Windows Vista™ Home Premium 32bits 

o Onboard gigabit LAN interface 

o Iperf Server 

                                                           

1 Iperf, http://sourceforge.net/projects/iperf/ 

2 Jperf, http://sourceforge.net/projects/jperf/ 

3 Fonera, http://www.fon.com/ 

4 DD-WRT, http://www.dd-wrt.com 
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Our solution was tested with AODV-UU [43] routing protocol and different types of data. The 

obtained results were of course compared with a simple scenario with no virtual interface, no 

bandwidth aggregation and no load-balancing mechanisms, referred as RAW in the following 

section. The detailed testbed configuration used for the Fonera+ routers, can be found in the 

annex section of this thesis.  

The tests were done in both an ideal environment, where there was no overload of the APs, 

and in a saturated environment, where we have several different users using the ad-hoc 

network simultaneously, lowering the throughput of each individual node. This is an interesting 

test scenario, that was considered in order to find out the different situations for the vi to perform 

better. 

 

4.1.2 Main Topologies 

 

The experiments run considered three different topologies as basis for the different 

developed scenarios. In each topology we test both the load-balancing mechanism as well as 

the power saving mode, in terms of throughput and delay, to understand the actual impact of 

the virtual interface. The first topology considered (Topology I) is illustrated in Figure 4.1. 

Topology I serves as a control test, as it only contemplates one access point and one physical 

network interface present in the mobile device A.  

For the mentioned topology, node A is connected by means of an ad-hoc network. The 

purpose of this configuration is related to the need to get data that serves as control, relating to 

the situation where we are not using the virtual interface, which will then be compared with more 

complex scenarios where we use the vi. We also use this topology to estimate the delay added 

by the virtual interface, in order to understand the impact the vi is causing in terms of throughput 

in a situation where only one single node is available. The virtual interface will be situated 

behind the physical interface, as presented in Figure 4.1. 
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Figure 4.1: Topology I, one network interface and one AP. 
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The second considered topology (Topology II) is represented in Figure 4.2. Topology II is in 

fact similar to I, being the only difference the number of physical network interfaces present and 

the number of access points, which was now increased to 2. Such increment will assist in trying 

to understand the impact caused by the number of interfaces in the performance evaluation of 

the virtual interface. 

What we pretend to test with this topology is how the extra access point will impact the 

usage of the vi in terms of total throughput and overhead, since in this case a new path will be 

available, which should cause a slight increment in terms of overhead. Two tests will be made 

using this topology, in the first one, both access points will only have user A connected and 

transmitting data, while in the second test, the access point B will be saturated with data from a 

third party computer. Both results will then be compared, in order to understand how the vi will 

react to this change in the topology. 
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Figure 4.2: Topology II, two network interfaces and two APs. 

 

Finally topology III is illustrated in Figure 4.3. It still consists of paths that are one hop long, 

but now there is just one AP and one more physical network interface in comparison with 

topology II. In this experiment the AP is saturated with data from a secondary source. Our 

expectations were to observe what would be the reaction of the vi when there is an increment in 

the number of interfaces, in a worst case scenario where there is just one AP and multiple 

network interfaces. For this scenario we also used different network interfaces, two IEEE 

802.11g and one IEEE 802.11b. 
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Figure 4.3: Topology III, three network interfaces and one AP. 

 

4.2 Evaluation Results 
 

In this section we present the experimental results. For each scenario run, results 

concerning packet loss, delay, and throughput as well as power usage are presented and 

explained. 

Throughput was measured using jperf as mentioned in the previous section. This is a client-

server based tool, which can measure both TCP and UDP traffic. Raw measurements were 

taken without the virtual interface. The varying packet sizes are relevant to determine the per-

packet overhead. The values are taken during 100 seconds, averaged over 20 readings and 

show the throughput between two nodes in Mbps. To evaluate the delay and handover time 

added by the vi module, we used the command ping. 

 Finally, to measure the total energy consumption during a certain period of time, we created 

a bash script that extracts to a file the amount of energy in miliwatt hour (mWh) the mobile 

device has. The bash script can be found in Annex VI. 

 

4.2.1 Experiment 1 
 

The first experiment relies on Topology I (cf. section 4.1.2) which represents a simple 

topology, since we want to test the difference of performance between the vi and the raw 

measurements taken without it. In the topology, node A corresponds to a sender with just one 

physical interface and node Dest. corresponds to the destination. The sender generates traffic 

according to the settings described in section 4.1.1 and packet sizes vary as 1 Kbyte, 2 Kbytes, 
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4 Kbytes, 8 Kbytes, 16 Kbytes and 32 Kbytes, in order to allow measuring the per-packet 

overhead.  

 

Throughput 

Starting by the analysis concerning the achieved throughput using TCP data, Table 4.1 

shows the throughput and corresponding standard deviation (σ) when using the virtual 

interface, and the raw measurements taken without it. Graph 4.1 plots that information, so it is 

possible to make a better comparison between both situations.  

 1KB 
STD 
(σ) 

2KB 
STD 
(σ) 

4KB 
STD 
(σ) 

8KB 
STD 
(σ) 

16KB 
STD 
(σ) 

32KB 
STD 
(σ) 

RAW 
(Mbps) 

21,914 0,381 22,139 0,343 22,814 0,421 23,108 0,396 23,363 0,414 23,743 0,442 

Virtual 
interface 
(Mbps) 

21,047 0,511 21,243 0,547 21,984 0,650 22,455 0,682 23,022 0,715 23,482 0,788 

Virtual 
Interface w/ 

Power 
saving 

mode on 
(Mbps) 

21,001 0,523 21,109 0,581 21,807 0,694 22,393 0,702 22,900 0,763 23,374 0,802 

Table 4.1: Wlan throughput in Mbps, different packet sizes. 

 

Graph 4.1 Total throughput in Mbps, using one interface and one AP (TCP data). 

The results we obtained for the first scenario show that the difference in terms of throughput 

between using or not the virtual interface for TCP, with just one interface, is very small, about 

3.1% less in average with power saving off and 3.5% while on. Which is a good indicator, since 

in this topology the vi is simply relaying packets to the available interface. With more network 

interfaces and more available access points, this small delay added by the vi, can be easily 
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covered by the increase in throughput resulted from the simultaneous usage of those interfaces, 

as we will be seeing in experiment two and three.  

 

Delay added by the vi module 

Regarding the delay added by the vi, Table 4.2 shows the round-trip time in milliseconds and 

zero percentage of packet loss for the two same situations. This information allows us to have a 

very clear image of the delay added by the virtual interface since ping was used with the default 

packet size (64bytes). The smaller the packets, the more of them there are, which makes it 

easier to calculate the difference in terms of RTT between the control, designed as RAW, and 

our solution, since the differences are most likely caused by the vi module  The values are 

taken during 100 seconds and averaged over 20 readings. 

 

 Average RTT (ms) Std. Deviation (σ) 

RAW 1,730 0,009 

Virtual Interface 1,799 0,016 

Virtual Interface w/ Power saving mode on 1,808 0,014 

Table 4.2: Ping results, 1 interface and 1 access point.  

 

As we can see by the results presented in Table 4.2 the delay added by the vi, while the 

power saving mode is off, is around 4.0%, and roughly 4.2% with the power saving mode on, 

which is almost irrelevant (less than 0,1ms). The standard deviation also increases, while using 

the vi, since it is periodically estimating the RTT values for the available interfaces, which 

causes some fluctuations in terms of the total throughput. Also, there was zero percent packet 

loss for all three test situations. 

The obtained results proves that using the vi with only one interface, does not causes too 

much impact in terms of total throughput or adds excessive overhead, which was a negative 

factor in previous versions. 

 

Handover 

Still in Experiment 1, we calculated the handover time, using the command ping. The 

number of missing packets were counted and multiplied by the ping frequency.  
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The type of handover that was measured was the horizontal handover, where the MAC level 

protocol remains the same, but the route changes. We trigger a route change by physically 

detaching the interface of a node. The results are presented in Table 4.3. Handover times are 

averages over 20 readings with standard deviation σ. Entries of the form "VI/x" must be 

understood as "Virtual Interface with a maxdiff value of x".  

Type Interface Time (s) Standard Deviation (σ) 

Horizontal RAW 

Vi/10 

Vi/100 

Vi/1000 

1.5 

1.8 

2.3 

2.5 

0,5 

0.92 

0.73 

0.67 

Table 4.3: Handover time in seconds, using Wi-Fi interfaces. 

 

Under our setup, when the vi was not being used, we measured a packet loss of roughly 1.5 

packets when the route changed from one hop to another. Each packet that is lost corresponds 

to roughly one second passed by, since the ping frequency that was used was one second. 

From the results presented in Table 4.3 we see that packet loss increases with increasing 

maxdiff threshold. The former is reasonable because the bigger the maxdiff value, the more the 

priority policy gets enforced, and a pure priority driven MAC switching would not lead to any 

switching at all. As expected, the smaller maxdiff gets the less stable the handover becomes. 

However, in our scenario a maxdiff value of 10 was sufficient to guarantee stable handover 

while changing interface priorities. 

 

Power Consumption 

Finally in Experiment 1, we calculated the amount of energy the mobile consumed during 

600 seconds, with and without the vi module, so we could understand this abstraction impact on 

the energy being consumed by the mobile device. The values in Table 4.4 are presented in 

miliwatt hour (mWh). They were measured during 600s and averaged over 10 readings. To 

measure the consumed energy during this period we used the bash script presented in the 

Annex VI. It extracts the energy the device has, for each 10 seconds. The following table 

presents both the average energy consumption in mWh per second, and the total energy 

consumed during the 600s period. 
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Average Energy 

Consumption (mWh) per 

second 

Average Energy 

Consumption (mWh) in 

600s 

Standard 

Deviation (σ) 

RAW 5,294 3123,333 1,035 

Virtual 

Interface 
5,316 3136,667 1,209 

Table 4.4: Energy consumption in milliwatt hour. 

 

As we can see in Table 4.4, the difference in terms of energy consumed during 600 seconds, 

between both scenarios, was only 13,33 mWh, just 0,427% more. This result proves that the 

module consumes just a minor added amount of energy when compared with a control 

scenario, designed as RAW in Table 4.4. 

Overall there is a slight overhead when relying on the vi, be it from a throughput, power 

consumption, or from a delay perspective. This is expected, as by adding a layer of abstraction, 

we are also adding overhead in computation, with the expectations to introduce significant 

advantages. 

 

4.2.2 Experiment 2 
 

As in the previous experiment, node A is the single source transmitting data and node Dest. 

corresponds to the destination, but in this case we increased the number of interfaces present in 

the mobile device as well as the number of access points to which they are connected to. The 

experiment 2 is divided in two scenarios, both rely on Topology II (cf. section 4.1.2). While in the 

first test, the two existing APs are only being used by node A, in the second test, AP C is also 

being used by a second node that is constantly sending data, to simulate a saturated AP. The 

two physical interfaces used for this experiment were IEEE 802.11g.  

In this experiment we investigate wherever the virtual interface is capable of detecting a 

saturated AP and reducing the amount of data a certain physical interface is sending to it, by 

diverting part of the traffic to a second physical interface that is using a less saturated AP. 

 

Two Access Points, no saturation 

For this scenario we used one data flow coming from a single application and multiple data 

flows coming from different applications, so the available interfaces could be used 

simultaneously. Starting with the analysis of the total throughput using TCP data, Graph 4.2 
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shows the throughput when using the virtual interface with one and several different data flows 

during 100 seconds, averaged over 20 readings. The packet size used for this experiment was 

32 Kbytes. 

 

Graph 4.2: Total throughput in Mbps, using the vi with two interfaces and two APs (TCP data). 

 

 Average 

Throughput 

(Mbit/s) 

Standard Deviation 

(σ) 

Packet loss 

(%) 

One Data Flow 23,627 0,610 1% 

Multiple Data Flows 42,615 5,161 3% 

RAW 23,879 0.410 0% 

Table 4.5: Average throughput in Mbps, using the vi with two interfaces and two APs. 

 

As we can see in the results presented by Graph 4.2, the total throughput when using the 

virtual interface with TCP data (while sending a single data flow) is very similar in comparison 

with RAW measurements taken without the virtual interface. On the other hand the values 

obtained when sending different data flows, are nearly 79% higher when comparing with the 

RAW measurements from Experiment 1. This increment results from the fact that we are 

simultaneously using several physical interfaces to send the different data flows. 
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Also if we look closely in Graph 4.2, it takes around 5 seconds for the throughput to reach 

more than 40Mbit/s, this happens because the mobile device will only be using both physical 

interfaces simultaneously, when the first interface finishes transmitting the data from the first 

data flow in its queue and moves on to the second data flow. This is done to ensure that we will 

not have a huge amount of packets reaching the correct destination out of order. 

The packet loss is in average 1% and 3% (cf. Table 4.5) for one data flow and multiple data 

flows respectively, due to the fact that we are constantly switching the physical interfaces used 

to transmit the data, which causes some packets to be lost and some fluctuations in terms of 

throughput, raising also the standard deviation.  

 

Two Access Points, AP C is saturated 

For this scenario we saturated one of the access points, to verify how would the vi adapt to a 

sudden increase in terms of the RTT value measured for a certain physical interface, connected 

to that AP. As in the previous test experiment, single and multiple data flows were employed. 

The values obtained were taken during a time frame of 100 seconds, and averaged over 20 

readings. For a better comparison, we also measured the throughput of a single interface, 

without using the vi module, designated as RAW, connected to a single saturated AP. The 

packet size used for this experiment was 32 Kbytes. 

 

 

Graph 4.3: Total throughput in Mbps, with two interfaces and two APs (one saturated) (TCP data). 
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For one continuous data flow, the total throughput when using the vi, during the time frame 1 

to 30 seconds is very similar to the RAW measurements (cf. Graph 4.3), since the vi is actually 

using the interface connected to the saturated AP. Once it changes to the second AP that is 

currently not being used by another user, it causes a sudden increase in the total throughput, 

reaching roughly 24 Mbps as seen in Graph 4.3. What happens is that the VBA assigns a lower 

percentage to the interface using the saturated AP, which will lower the time that such interface 

will be used to send the data, increasing the total throughput to an average of 19,125 Mbps as 

seen in Table 4.5.  

In this specific scenario, with a single data flow, the usage of the vi module with two different 

physical interfaces is in average, increasing 63% the total throughput, when comparing with a 

situation where a single interface is connected to a saturated AP (11,713 Mbps).  

When sending different data flows, we obtained a very similar result to the one presented in 

the previous scenario (2 APs, no saturation). It takes around 6s for the throughput to reach 

35Mbps, when the vi starts using both physical interfaces, and consequently the two APs. Since 

one of the APs is dividing the bandwidth between node A (cf. Figure 4.2) and a third party user, 

the total throughput when using both network interfaces only reaches a little more than 35Mbps 

in comparison with the 42Mbps obtained in the previous test scenario. 

 

 Average 

Throughput 

(Mbit/s) 

Standard Deviation 

(σ) 

Packet loss 

(%) 

One Data Flow (vi) 19,125 5,491 2% 

Multiple Data Flows 

(vi) 
33,575 5,551 3% 

RAW 11,713 0,428 1% 

Table 4.6: Throughput in Mbps, using two interfaces and two APs (one saturated). 

 

The load balancing mechanism presented in the vi module slightly increases the packet loss 

and standard deviation as seen in Table 4.6. If we compare both the standard deviation results 

of this and the previous scenario, when sending a single and continuous data flow, there is a 

relatively high increment, which is caused by the difference in throughput values obtained for 

the two access points (11.5 Mbps and 23.5 Mbps).  

 

 

 



66   CHAPTER 4. PERFORMANCE EVALUATION 

 

 

 

4.2.3 Experiment 3 
 

To understand and find the potential limitations of the vi module, we decided to create a 

worst-case scenario. It relies on Topology III (cf. section 4.1.2), where we have three physical 

network interfaces (two IEEE 802.11g and one IEEE 802.11b) connected to just one saturated 

access points. For this experiment we also used one single and continuous data flow coming 

from a single application, and multiple data flows as well, so that the available interfaces could 

be used simultaneously. 

Starting with the analysis of the total throughput using TCP data, Graph 4.4 shows the 

throughput when using the virtual interface with one and several different data flows during 100 

seconds, averaged over 20 readings. The packet size used for this experiment was 32 Kbytes. 

In Graph 4.4 we also added the throughput of a single interface, calculated without using the vi 

module, designated as RAW, connected to a single saturated AP (values calculated in 

experiment 2). 

 

 

Graph 4.4: Total throughput in Mbps, with three network interfaces, and one saturated AP (TCP data). 

 

If we take in consideration that this is a worst case scenario, where all access points are 

being used by several users, the results presented in Graph 4.4, are very satisfactory. While 

sending a single and continuous data flow the throughput is slightly lower when comparing with 

the RAW measurements, due to the fact that there is a network interface with a lower bandwidth 
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(IEEE 802.11b) than the other two. This network interface is used during a smaller period of 

time, meaning the load balancing mechanism detected that the estimated RTT for that link was 

higher than the remaining.  

When using multiple data flows the total throughput increases due to the fact, that multiple 

network interfaces are used simultaneously. In this case, by establishing multiple connections to 

a single AP, its available interface is distributed equally through all active users.  

When testing with just one network interface, without the vi module, we will have two active 

users connected to the available AP, our physical interface and third party user saturating the 

AP, so its bandwidth will be divided between the two users. For this experiment when using the 

vi module, we had three physical interfaces plus the third party user connected to the same AP, 

which means we are getting roughly three quarters of the AP‟s bandwidth instead of just half, 

resulting in a increment of the total throughput. Therefore, the percentage of total throughput is 

a function of the ratio of interfaces (instead of ratio of users).   

 

 Average 

Throughput 

(Mbit/s) 

Standard Deviation 

(σ) 

Packet loss 

(%) 

One Data Flow (vi) 9,915 2,664 2% 

Multiple Data Flows 

(vi) 
14,756 1,021 4% 

RAW 11,713 0,428 1% 

Table 4.7: Throughput in Mbps, using three interfaces and one saturated AP. 

 

As seen in Table 4.7 both the packet loss and standard deviation, for the two test 

experiments are above the values obtained for the control scenario, described as RAW. This 

difference can be easily explained due to the fact that for this experiment we have three network 

interfaces, one of them has a lower bandwidth than the other two, which causes a bigger 

fluctuation in terms of total throughput. The one percent increment in the packet loss may result 

from the usage of multiple interfaces in a saturated environment.  

 

4.2.4 Experiment 4 

 

Finally in Experiment 4 we tested the power consumption mechanism, to try to understand if 

by using fewer interfaces to send the data we are able to diminish the amount of energy being 

spent and if the difference is significant. This experiment relies on Topology II (cf. section 4.1.2), 

where node A is the single source transmitting data and node Dest. corresponds to the 
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destination. The two network interfaces (1x IEEE 802.11g, 1x IEEE 802.11b) are connected to 

two access points. Real traffic (different data flows, from different applications) was used, to 

simulate a real-life environment.  

We used the bash script presented in Annex VI to extract the amount of energy being 

consumed every 10 seconds, and jperf to measure the throughput. The data for both 

measurements was collected over 600 seconds (10 minutes) and is presented in Graph 4.5. 

Each measurement is displayed according to its own axis, so we can then verify if there is a 

correlation between the throughput and the energy values. The energy consumption is 

presented in miliwatt hour (mWh), while the throughput is displayed in Mbps. 

 

Graph 4.5: Correlation between the total Throughput in Mbps and the Consumed Energy in miliwatt hour. 

 

We can clearly verify from Graph 4.5, that when there is an increment is terms of throughput, 

there is also a slight increment is terms of the energy being consumed by the device. The 

opposite is also true. This happens because the power consumption mechanism, depending on 

the size of the data flow, decides if the device should use the network interfaces picked by the 

VBA or the interface with the lowest energy consumption to send the data.  

When a data flow has a significant size, it is usually better to maintain the VBA‟s policy, since 

the device will transmit the data at a higher rate, which will result in a lower amount of energy 

being consumed to send that amount of data. When data flows have a relatively small size, it 

takes roughly the same time to send them when using one or several network interfaces, 
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resulting in a noticeable energy saving when using just one of those interfaces. This is exactly 

what we see in Graph 4.5. 

During this experiment, the mechanism saved roughly 190 mWh of battery in our device, 

which for a laptop is not very significant, but in a smaller and more economic device, such as a 

mobile phone or a sensor, this difference can have a very big impact, since it gives extra time of 

battery.  

 

4.3 Performance Evaluation Summary 
 

The results we obtained in terms of delay added by the vi module are very promising, 

especially if we compare them with the vi‟s previous version results [28][32], where the added 

overhead was so high that it caused the throughput to go down around 30%, mostly caused by 

the way the authors used to intercept the data. Another expected result was the packet loss 

percentage getting higher with the usage of several interfaces and APs, which is normal, since 

the number of available paths to send the information also increases.  

By adding the aggregation and load-balancing mechanisms to the virtual interface we were 

able to significantly increase the total throughput in around 70% (average) when sending 

multiple data flows, by using multiple network interfaces simultaneously, proving that it is 

possible to have a virtual interface hiding the heterogeneity of the used devices from the upper 

layers, without adding an excessive amount of delay, and increasing the total throughput, even 

in a worst-case-scenario.  

In terms of the power consumption mechanism, the obtained values are also very promising; 

by using this mechanism we were able to optimize the amount of energy being consumed. The 

amount of saved energy is relatively low, but for a small device, such as a mobile phone or a 

sensor, with very strict energy concerns, such difference can be quite significant, resulting in 

extra time of battery. 

We are now able to answer the questions presented in the beginning of this chapter: 

 

Is the overhead added by the virtual interface excessive?  

By adding Netfilter hooks we were able to significantly reduce the amount of delay added by 

the vi module, which is now less than 0,1ms, resulting in a total increment of 4%. The obtained 

results prove that using the vi with only one network interfaces, does not causes a high impact 
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in terms of total throughput nor does it add excessive overhead, which was a negative factor in 

previous versions. 

 

Are the implemented mechanisms improving the total throughput? If yes, in which 

situations? 

In all experiments, when using multiple data flows, we were able to significantly increase the 

total throughput when using the vi module with multiple interfaces, even in a worst-case-

scenario with multiple network interfaces and just one available AP. When sending just one 

continuous data flow, the average throughput is slightly lower when there is no saturation of the 

APs being used, but it is higher when at least one AP is saturated, since the load balancing 

mechanism is able to detect the saturated link, and reduce the amount of data being sent via 

that network interface. 

Overall, using this type of virtual interfacing is extremely valuable for multiple simultaneous 

flows (e.g. use of multiple applications) which in fact corresponds to today‟s majority of 

situations. Assuming a single flow, then the added cost is not significant, comparing to the 

benefits provided overall for multiple flow usage. 

 

Is the power consumption mechanism, present in the vi module, saving any energy? 

By using the vi module, with the power consumption mechanism on, we were able to reduce 

the amount of energy being consumed by using a network interface with a lower energy 

consumption. The amount of energy saved is not very high but if we apply the solution to 

devices with very strict power limitations, such as mobile phones, such result will be beneficial. 

In our device, the usage of this power consumption mechanism resulted in energy saving of 

roughly 5.4%. 
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5 Conclusions and Future Work 
 

This chapter relates to the summary and conclusions to be drawn from the work developed. 

We implemented an end-to-end communication abstraction that can be used in 

heterogeneous mobile ad-hoc networks. Such networks are characterized by different MAC 

technologies used among the nodes. The solution is based on a virtual interface (vi) approach, 

which allows the usage of all interfaces presented in a mobile device simultaneously, while 

hiding the heterogeneity from the applications and allow any number of interfaces to be added, 

increasing the total throughput. 

Since we are looking for a virtual interface, we are not interested in packet forwarding, but 

the idea of storing a MAC/interface mapping based on incoming packets is also suitable for local 

traffic. We have implemented a virtual interface (vi) that adopts this mechanism. Like the Linux 

Ethernet Bridge, the vi represents a regular layer-two-device and can be configured accordingly. 

Using a custom Netfilter target has shown to be very promising solution, that added very little 

overhead and proved to be very flexible. Such a target can be loaded and unloaded from kernel 

at any time.  

Implementing a virtual interface for transparent heterogeneous mobile ad-hoc networks has 

proven to be a good approach. Reasonable handover times can be achieved when using any 

routing protocols. The throughput rates when using the vi module, with several network 

interfaces, are significantly higher, reaching in some situations an increase of 79%. In terms of 

the power consumption mechanism, the experimental values are also very promising; by using 

this mechanism we were able to optimize the amount of energy being consumed. 

As future work, we would like to extend the virtual interface to work in different access 

networks, others than ad-hoc networks, with for example several 3G and 802.11x interfaces. 

Moreover, it would be interesting to extend the module to smaller devices, such as mobile 

phones, to see how it would impair their performance in terms of their total throughput and 

energy consumption.  

Finally, in order to simplify the process of estimating the energy being consumed for every 

network interface, we considered that the energy consumption of a certain interface when in idle 

time is zero. For a more correct approach, the energy a certain interface is consuming when in 

idle, should also be taken as a variable in the used algorithm. It would be interesting to make 

such modification and compare the results, so we could understand if there is actually any 

impact in the amount of energy saved by the power saving mechanism, when considering the 

idle time as an additional variable.  
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Annex I – Wi-Fi and Bluetooth 

IEEE 802.11 – Wi-Fi 

Since its entrance into the mainstream of networking technology, Wi-Fi has mostly been 

used as a replacement and augmentation for wired local area networks. Wi-Fi is well-suited for 

applications requiring high-volume data transfer and distances below 10 meters.  

WLANs have been, through the last decade, deployed as an extension of other access 

technologies in a way to expand the reach of Internet broadband access and hence to facilitate 

the penetration of Voice over IP (VoIP) and other data services. WLANs as complementary 

networks normally follow an infrastructure mode of operation, where a central controller - the 

Access Point (AP) / meddles and controls communication between any 2 elements. 

More recently, there has been a surge of WLANs operating in mesh (ad-hoc mode), that is, 

in a completely decentralized way. This is due to the emergence of soft-radio and also of open 

distribution operating systems contemplating low-cost APs. 

In both situations, the widespread deployment of WLANs is underpinned by the two most 

popular variants of IEEE 802.11 standards, 802.11b and 802.11g. 

IEEE has specified a set of standards as the 802.11 family for WLANs. The IEEE 802.11 

specifications define a single Medium Access Control (MAC) layer [44][45] along with multiple 

physical layers [44][46][47]. Distributed Coordination Function (DCF) is the fundamental MAC 

technique that employs a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) 

distributed algorithm and an optional virtual carrier sense using Request To Send (RTS) and 

Clear To Send (CTS) control frames. The original IEEE 802.11 standard [44] specifies data 

rates of 1 Mb/s and 2 Mb/s, and defines Direct Sequence Spread Spectrum (DSSS) - based 

physical layer that operates at the 2.4 GHz ISM band. The original 802.11 was rapidly 

supplemented by IEEE 802.11b [46], which is specified to support higher data rates up to 11 

Mb/s at 2.4 GHz using DSSS with complementary code keying (CCK) modulation. 

IEEE 802.11g further extends 802.11b to support the data rates up to 54Mb/s at 2.4GHz. 

The higher data rate in 802.11g is enabled by using Orthogonal Frequency Division Multiplexing 

(OFDM) modulation as specified in the so-called Extended Rate Physicals (ERPs) physical 

layer. 

Along with the gradual deployment of WLANs, the involved Wi-Fi products are delivered 

under different versions of 802.11 standards. Thus, IEEE 802.11b and IEEE 802.11g devices 

unavoidably co-exist in common coverage area. In this mixed networking environment, the 

legacy 802.11b devices cannot detect the ERP-OFDM signals sent from 802.11g devices; 
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consequently they cannot cause the Clear Channel Assessment (CCA) function within physical 

layer to indicate the channel busy and refrain from channel access as specified in CSMA/CA. 

This inability of legacy 802.11b devices leads to frame collisions in the channel access between 

802.11b and 802.11g devices. To deal with this issue, the 802.11g defines a protection 

mechanism based on the channel reservation for the ERP-OFDM transmissions. To ensure that 

the reserved channel status is understandable by the mixed devices, extra frames are 

introduced in the protection mechanism. Those frames have to be sent with NonERP 

modulation at a low rate (typically 2 Mb/s) for them to be understood by all stations. 

One option of extra frames is the RTS/CTS frames which are originally designed to reduce 

frame collisions caused by hidden terminals. Any device (other than sender and intended 

receiver) receiving the RTS or CTS frames should refrain from sending data by setting its 

network allocation vector (NAV) for a given time period indicated in the Duration field of RTS 

and CTS frames. The other option of extra frames is CTS-to-elf frames whose source address 

and destination address are identical. The 802.11g sender transmits a CTS-to-self frame to 

inform all the neighbouring 802.11g and 802.11b devices to update NAV according to the 

Duration field of the CTS-to-self frame. Obviously, extra frames (RTS, CTS, and CTS-to-self) 

used for ensuring interoperability are viewed as overhead for system performance because they 

reduce the available medium resource for data delivery. 

Specifically, when voice traffic is provisioned over homogeneous 802.11 WLANs (802.11b 

only WLAN or 802.11g only WLAN), exchange of RTS and CTS frames is typically turned off 

because a VoIP packet size (200 bytes in G.711) is usually less than a pre-defined triggering 

threshold (maximum is 2347). In the mixed 802.11b and 802.11g WLAN, either exchange of 

RTS/CTS frames or sending CTS-to-self frames needs to be initiated for performing the 

protection mechanism. 

CTS-to-self protection mechanism is more efficient than RTS/CTS protection mechanism in 

clear channel conditions (no hidden terminals). Usually, there are few hidden terminals in the 

indoor voice over WLAN (VoWLAN) services, hence CTS-to-self protection mechanism is 

typically utilized [48].  

Nevertheless, the voice performance degrades significantly in the mixed 802.11b and 

802.11g WLAN with either protection mechanism. Compared to the 802.11g only WLAN, it is 

reported in [47] that the voice capacity in the mixed WLAN drops more than 70% and 50% with 

RTS/CTS protection mechanism and CTS-to-self protection mechanism, respectively. 
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IEEE 802.15.x – Bluetooth 

Bluetooth is defined as a wireless technology that provides short-range communications 

intended to replace the cables connecting portable and/or fixed devices while maintaining high 

levels of security. There are three key features of Bluetooth; robustness, low power, and low 

cost.  The Bluetooth standard provides a uniform structure enabling a wide variety of devices to 

seamlessly, and wirelessly, connect and communication with each other.  Bluetooth devices 

connect and communicate via RF link through short-range piconets and have the ability to 

connect with up to seven devices per piconet.  Each of these devices can also be 

simultaneously connected to other piconets.   

The piconet itself is established dynamically and automatically as Bluetooth enables devices 

enter and leave the range in which its radio operates. The major pro of Bluetooth is the ability to 

be full duplex and handle both data and voice transmission simultaneously. The differentiation of 

Bluetooth from other wireless standards such as Wi-fi is that the Bluetooth standard gives both 

link layer and application layer definitions which support data and voice applications. 

Bluetooth comes in two core versions; Version 2.0 + Enhanced Data Rate and Version 1.2.   

The primary differences being Bluetooth 2.0 has a data rate of 3 Mega bits per second whereas 

Version 1.2 has only a 1 Mega bit per second data rate. Both are equipped with extended 

Synchronous Connections (eSCO), which improves voice quality of audio links by allowing 

retransmissions of corrupted packets. 

Bluetooth technology operates in the unlicensed industrial, scientific and medical (ISM) band 

at 2.4 to 2.485 GHz, using a spread spectrum, frequency hopping, full-duplex signal at a 

nominal rate of 1600 hops/sec.  Bluetooth is modulated using adaptive frequency hopping 

(AFH).  This modulation has the capability to reduce interference between wireless 

technologies sharing the ISM band.  It does this by having the ability to detect other devices 

using the ISM band and use only frequencies that are free. The signal itself hops between 

ranges of 79 frequencies at 1 Megahertz intervals to minimize interference [49]. 

The devices themselves are categorized into range ability.  There are three classes of 

devices each covering a select range.  Class 1 devices are mostly used in industrial cases and 

have a range of 100 to 300 meters.  These devices take more power than the standard devices 

you and I are accustomed to in our daily routine and therefore are a bit more expensive.  Class 

2 devices are most commonly found in mobile devices and the most commonly used. Items 

such as cell phones and printers are Class 2 devices and have a range of 10 to 30 feet and use 

only 2.5 milli-Watts of power.  Finally, Class 3 devices have the shortest range of up to 1 meter 

and include devices such as keyboards and a computer mouse.  Class three devices therefore 

require the least amount of power and are in general the lease expensive.  
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The Bluetooth specification defines two links types, Asynchronous Connectionless (ACL) 

and Synchronous Connection Oriented (SCO). Different link types can be used by different 

master slave pairs in the same piconet. The SCO links are chiefly used for voice traffic and their 

data rate is 64 Kbps. These are characterized by a periodic single slot packet assignment. For 

data traffic and support broadcast messages ACL links are mainly used. ACL link types are 

used by Multislot packets and can attain maximum data rate of 721 Kbps in one direction and 

57.6 Kbps in other direction. These data rates can be achieved if no error correction is used. 

For device communication the Bluetooth specification uses Time Division Duplexing and 

Time Division Multiple Access, being 625 μ sec the length of single time slot [49]. 

There is a preset packet format for Bluetooth. Firstly a 72 bit access code that holds the 

piconet address. The 54 bit header following the access code contains retransmission, flow 

control and error correction information. The payload field comes in the last of packet and may 

be of up to 2745 bits. 
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Annex II – AODV and OLSR 
 
AODV - Ad-hoc On demand Distance Vector routing protocol 

The Ad-hoc On demand Distance Vector (AODV) [5][6] is a routing algorithm for MANET, so 

that routes between nodes are only built as soon as, and maintained as long as, they are 

needed by a source node. Figure 6.1 shows the message exchanges of the AODV protocol. 

Hello messages may be used to detect and monitor links to neighbors. If Hello messages are 

used, each active node periodically broadcasts a Hello message that all its neighbors receive. 

Because nodes periodically send Hello messages, if a node fails to receive several Hello 

messages from a neighbor, a link break is detected. 

 

Figure 6.1: AODV protocol messaging. 

 

When a source has data to transmit to an unknown destination, it broadcasts a Route 

Request (RREQ) for that destination. At each intermediate node, when a RREQ is received a 

route to the source is created. If the receiving node has not received this RREQ before, and it is 

not the destination and does not have a current route to the destination, it re-broadcasts the 

RREQ. If the receiving node is the destination or has a current route to the destination, it 

generates a Route Reply (RREP). The RREP is unicast in a hop-by- hop fashion to the source. 

As the RREP propagates, each intermediate node creates a route to the destination. When the 

source receives the RREP, it records the route to the destination and can begin sending data. If 

multiple RREPs are received by the source, the route with the shortest hop count is chosen. 

As data flows from the source to the destination, each node along the route updates the 

timers associated with the routes to the source and destination, maintaining the routes in the 

routing table. If a route is not used for some period of time, a node cannot be sure whether the 

route is still valid; consequently, the node removes the route from its routing table. 
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If data is flowing and a link break is detected, a Route Error (RERR) is sent to the source of 

the data in a hop-by- hop fashion. As the RERR propagates towards the source, each 

intermediate node invalidates routes to any unreachable destinations. When the source of the 

data receives the RERR, it invalidates the route and re-initiates route discovery if necessary. 

An implementation of AODV for Linux systems named AODV-UU is provided by the Uppsala 

University [7]. It consists of a kernel module and a userspace daemon. Although still 

experimental, AODV performs well in a Linux MANET. 

AODV-UU uses Netfilter to capture the packets. The main protocol logic resides in a 

userspace daemon. The authors have also added a number of supplemental features, not part 

of the AODV draft, to increase the performance of Hello messages [8] (e.g., unidirectional link 

support and a signal quality threshold for received packets). In addition, AODV-UU also includes 

Internet gatewaying and multiple interface support. Since AODV-UU is well documented and 

able to run in simulation, a number of patches are available (e.g., multicast and subnetting) to 

further extend its functionality. 

 

OLSR - Optimized Link State Routing protocol 

The Optimized Link State Routing protocol is a proactive, table-driven routing algorithm for 

MANET. An implementation of the OLSR protocol is provided by [9]. OLSR runs as a standalone 

server process and is platform independent. It is supposed to work on Linux, FreeBSD, 

NetBSD, OS X and even on Windows. All operations are performed in userspace. Explicit 

interaction with the kernel is only necessary to manipulate the routing table. 

OLSR minimizes the overhead from flooding of control traffic by using only selected nodes, 

called “multipoint relays” (MPRs), to retransmit control messages. This technique significantly 

reduces the number of retransmissions required to flood a message to all nodes in the network.  

Secondly, OLSR requires only partial link state to be flooded in order to provide shortest path 

routes.  The minimal set of link state information required is, that all nodes, selected as MPRs, 

must declare the links to their MPR selectors.  Additional topological information, if present, 

may be utilized e.g., for redundancy purposes. 

OLSR may optimize the reactivity to topological changes by reducing the maximum time 

interval for periodic control message transmission. Furthermore, as OLSR continuously 

maintains routes to all destinations in the network, the protocol is beneficial for traffic patterns 

where a large subset of nodes are communicating with another large subset of nodes, and 

where the [source, destination] pairs are changing over time.  The protocol is particularly suited 

for large and dense networks, as the optimization done using MPRs works well in this context.  

The larger and more dense a network, the more optimization can be achieved as compared to 
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the classic link state algorithm. 

OLSR is designed to work in a completely distributed manner and does not depend on any 

central entity.  The protocol does not require reliable transmission of control messages: each 

node sends control messages periodically, and can therefore sustain a reasonable loss for a 

number of such messages.  Such losses occur frequently in radio networks due to collisions or 

other transmission problems. 

Also, OLSR does not require the sequencial delivery of messages.  Each control message 

contains a sequence number which is incremented for each message.  Thus the recipient of a 

control message can, if required, easily identify which information is more recent, even if 

messages have been re-ordered while in transmission. Furthermore, OLSR provides support for 

protocol extensions such as sleep mode operation, multicast-routing etc.  Such extensions may 

be introduced as additions to the protocol without breaking backwards compatibility with earlier 

versions. OLSR does not require any changes to the format of IP packets.  Thus any existing 

IP stack can be used as is: the protocol only interacts with routing table management. 

In Figure 6.2, node N2, selected a few neighbor nodes in the network. These nodes will send 

node N2 packets. These selected nodes, N1 and N6 are called Multipoint Relays of node N2. 

Node N2 selects its MPR to cover all the nodes that are exactly two hops away from it. In our 

example: N7, N8, N9 and N4. A node which is not a Multipoint Relay can read the packet sent 

from N2 but cannot forward it. 

 

Figure 6.2: OLSR route selection. 
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Annex III –Kernel Programming 
 

Linux kernel aspects 

This annex tries to introduce a few of the basic concepts of Linux kernel programming. The 

reader is assumed to be familiar with using the GNU toolchain, namely gcc and make, further 

should he know how to build a customized kernel. 

    It is of course not possible go give an elaborate introduction to kernel programming in such 

a thesis. This introduction is supposed to teach the reader the very basics of Linux kernel 

programming. It shows the major aspects related to the implementation of the virtual network 

interface, namely to get a module built and have it registered with the central facilities of the 

Linux kernel. A more in-depth look at Linux kernel programming is given in [39]. 

    Any structure or function which is referenced in the following can be looked up at the Cross 

Referencing Linux [40] project. They provide a search engine and a hyper-linked view of the 

Linux source code. 

 

The Linux kernel 

The Linux kernel is a so-called monolithic kernel, i.e. all operating system services such as 

memory and process management, hardware drivers, networking and concurrency are 

implemented as a whole and run in supervisor mode sharing the same address space. Linux 

provides the ability to load so-called modules at run-time. These become part of the kernel as if 

they were linked-in. 

    Most device drivers are implemented as modules, although many of them can be linked into 

the kernel at compile-time. The decision whether to link a driver into the kernel or to have it as a 

module is based on the actual needs. The modern way is to have all drivers which are not 

needed at an early phase of the boot process loaded as modules when needed. 

 

The Hello World Module 

Following the tradition of most programming related texts the first example will print "Hello, 

world". This example uses the logging facility of the kernel. The output is visible either on the 

console, in the dmesg output or in the syslog, i.e. usually this is /var/log/messages. 

    Listing 1 shows the implementation of this simple module. Even in this simplistic example a 

peculiarity of the Linux kernel shows up: the heavy usage of preprocessor macros. The first is 
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found after the “includes”. MODULE_LICENSE declares the license under which a module is 

distributed. As the Linux kernel itself is distributed only under GPL [41] which does not allow 

linking proprietary objects to GPL-objects, it is quite unavoidable to choose GPL as the module‟s 

license. Otherwise many kernel features are hidden from the module, which is very restricting. 

    The next macro is encountered in line 8. KERN_ALERT, KERN_DEBUG, KERN_INFO and 

others define the class of a log message which is to be printed to the kernel log ring-buffer. 

These macros expand to strings which prefix the actual message. 

    The last two lines of this example tell the kernel how to load and unload this module, again 

these are macros. 

    Listing 2 shows the corresponding makefile and listing 3 how the module is loaded into the 

kernel. Looking at the output of the dmesg program should reveal the two strings. 

 

01  #include <linux/module.h>   /* Needed by all modules */ 

02  #include <linux/kernel.h>    /* Needed by all modules */ 

03  #include <linux/init.h>           

04  MODULE_LICENSE("GPL"); 

05  

06  static int hello_init(void) 

07  { 

08  printk(KERN_ALERT "Hello, world\n"); 

09  return 0; 

10  } 

11  

12  static int hello_exit(void) 

13  { 

14  printk(KERN_ALERT "Bye, world\n"); 

15  } 

16  

17  module_init(hello_init); 

18  module_exit(hello_exit); 

Listing 1: A minimal kernel module. 

01  ifneq (($KERNELRELEASE),) 

02  obj-m := hello.o 

03  else 

04  KERNELDIR ?= /lib/modules/$(shell uname -r)/build 

05  PWD := $(shell pwd) 

06  

07  default: 

08  $(MAKE) -C $(KERNELDIR) M=$(PWD) modules 

09  endif 

Listing 2: The Makefile 

01  make 

02  insmod hello.ko 

03  rmmod hello 

Listing 3: Building and loading/unloading the module. 
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The build system 

The previous section showed how an external module can be built. This build process 

already involves the kernel build system. If a module is to be distributed as part of the kernel, its 

interaction goes further. The kernel build system not only comprehends compiling and linking 

but also the configuration. The user usually configures the kernel options through make config 

or its derivatives make menuconfig or make xconfig. These tools allow the user to select which 

modules should make part of the kernel and how they will be linked to it statically or as a 

module. A number of other parameters can be adjusted during this process. To make a module 

appear in these tools, it obviously needs to announce its presence. 

 

Becoming part of the kernel 

To let the module appear in the network section of the kernel configuration, its source has to 

be moved to net/hello/ in the kernel source tree. The file net/Kconfig has to contain a line source 

net/hello/Kconfig. In the hello directory, a new file Kconfig has to be created according to listing 

4. The makefile has to be adapted to its new environment as the module has to be compiled if 

and only if it is enabled in the configuration. 

01  config HELLO 

02    tristate "Hello world module" 

03    ---help--- 

04      To compile this code as a module, 

05      choose M here: the module 

06      will be called hello. 

07 

08      If unsure, say N. 

Listing 4: Config file for the kernel build system. 

Listing 5 shows how it might look like. Apart from some general conventions for in-kernel 

makefiles, the main difference to the simple one in the previous section is in line 15 where the 

content of the variable CONFIG_HELLO is evaluated. This variable is set by the configuration 

system of the kernel and refers to the config HELLO directive in listing 4. 

01  DEBUG = y 

02  

03  ifeq ($(DEBUG),y) 

04  DEBFLAGS = -O -g -DHELLO_DEBUG 

05  else 

06  DEBFLAGS = -O2 

07  endif 

08  

09  CFLAGS += $(DEBFLAGS) -I$(LDDINC) 

10  

11  TARGET = hello 

12  

13  ifneq ($(KERNELRELEASE),) 
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14  

15  obj-$(CONFIG_HELLO)        := hello.o 

16  

17  #hello-objs :=  #no other objects are linked to hello.o 

18  

19  else 

20  

21  KERNELDIR ?= /lib/modules/$(shell uname -r)/build 

22  PWD       := $(shell pwd) 

23  

24  modules: 

25  $(MAKE) -C $(KERNELDIR) M=$(PWD) LDDINC=$(PWD) modules 

26  

27  endif 

28  

29  

30  install: 

31  install -d $(INSTALLDIR) 

32  install -c $(TARGET).o $(INSTALLDIR) 

33  

34  clean: 

35  rm -rf *.o *~ core .depend *.ko 

36  rm -rf *.mod.c .tmp_versions .*.cmd 

37  

38  

39  depend .depend dep: 

40  $(CC) $(CFLAGS) -M *.c > .depend 

41  

42  ifeq (.depend,$(wildcard .depend)) 

43  include .depend 

44  endif 

Listing 5:  Makefile using the kernel build system. 

 

The Linux Device Model 

Linux 2.6 introduces a unified device model, a single data structure containing all the 

information on how the system is put together. Advanced features like hot-plugging devices on 

USB and PCI or power management demanded for a more sophisticated design than the one in 

Linux 2.4. 
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Figure 6.3: A look into the device model. 

 

The kernel programmer‟s work became easier because all subsystems work similarly while 

at the same time the registration of a driver and its devices to the system may have become 

more difficult. Certainly, the new device model is a giant step in the development of the Linux 

kernel and shows that Linux 2.6 is a modern and well designed operating system. The device 

model is mainly split into buses, classes and devices. A small piece of it is shown in figure 6.3 

which is adapted from [39]. 

A bus represents the way a device is connected to the system, whereas classes group 

devices according to their function. Two network devices, connected to the PCI bus and the 

USB bus, respectively, appear in the same class as they provide the same function. 

Each object in the device model (e.g. device, driver, bus) is represented by a kobject. The 

kobject’s tasks include reference counting, SysFS representation, hotplug event handling. It 

holds the device module structure together by having pointers to the parent, a kset, a list 

containing its children. It helps distinguishing the different types of kobjects with a pointer to a 

kobj_type. The kobject structure and its primary helpers kobj_type and kset are defined in 

“include/linux/kobject.h”. An excerpt of this file is given in listing 6. 

Listing 7 shows how a kobject is normally used. It is a member of the struct which wants to 

use kobject’s facilities. This technique is encountered throughout the kernel in many places, e.g. 

the linked list implementation (cf. listing 6). At this point it might be important to know that the 

basic structure device of which any device in the kernel has an instance normally is not used 
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solely, instead each subsystem defines a container for this structure. Another interesting point is 

to see that the structure class_device contains a kobject and the structure device contains 

another one. The usefulness of this will be seen in the section covering SystemFS. 

01  struct kobj_type { 

02     void (*release)(struct kobject *); 

03     struct sysfs_ops        * sysfs_ops; 

04     struct attribute        ** default_attrs; 

05  }; 

06  struct kset { 

07     struct subsystem         * subsys; 

08     struct kobj_type          * ktype; 

09     struct list_head           list; 

10     struct kobject             kobj; 

11     struct kset_hotplug_ops  * hotplug_ops; 

12  }; 

13  struct kobject { 

14     char                    * k_name; 

15     char                    name[KOBJ_NAME_LEN]; 

16     struct kref               kref; 

17     struct list_head          entry; 

18     struct kobject          * parent; 

19     struct kset             * kset; 

20     struct kobj_type       * ktype; 

21     struct dentry           * dentry; 

22  }; 

Listing 6: kobject structures. 

01  struct class_device { 

02     struct list_head        node; 

03     struct kobject          kobj; 

04     struct class            * class; 

05     struct device           * dev; 

06     void                    * class_data; 

07     char    class_id[BUS_ID_SIZE]; 

08  }; 

Listing 7: A kobject consumer. 

 

Registering with the device model 

Devices in Linux 2.6 normally will not be created out of the blue. The need for a device 

structure or even the whole driver arises when a device is detected through hotplug events or 

probing on the bus. Only special devices like the pure virtual network interface have to be 

initialized and registered with their respective subsystems manually. Another exception are 

busses which define on the one hand a bus_type and on the other hand a device. 

    Busses like the platform bus which do not have a physical representation (e.g. the USB has 

a representation in form of a UHCI controller) have to initialize their device structures 

themselves. 

    Network devices register with the network system through register_netdevice which also 
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includes a registration with the class net. It is important to distinguish between the different 

institutions to which a device might register and to know the various structures needed to do 

this. Table 6.1 tries to give an overview of the major entry points to the device model. It shows 

the relationship of subsystems and their structures and registration functions. 

 

Part of The Model Structure Function 

class struct class_device class_device_register 

network subsystem struct net_device register_netdevice 

bus struct device device_register 

Table 6.1: Registration facilities of the device model. 

 

System FS 

The user interface to the new device model is a filesystem which is usually mounted in /sys. 

It lists all devices, drivers, busses and their relations. All of them can export attributes which 

then are listed as files. Links to other parts of the system are implemented as directories, i.e. the 

pci bus contains directories representing the actual busses (pci controller) which again contain 

links to the connected devices. 

    Device directories contain links to their drivers. Via this filesystem the user or system utilities 

can access and modify the parameters of devices and drivers. The user can manipulate it using 

echo, cat and similar tools. The library libvi and the management tool victl make use of the files 

in the sys filesystem. Looking at Listing 8 one might be able to detect the correlation of the 

SysFS tree and the data structure showed in figure 6.3. As attributes are exported to SysFS as 

files, one has to define functions for read and write operations. The kernel provides macros and 

a convenient API to decorate a kobject1 with custom attributes. A directory containing several 

attributes is attached to an existing kobject as shown in listing 9. The function add_myattrs is 

usually called upon initialization of the class_device structure. The functions providing the read 

and write operations on the SysFS files should return the number of bytes read or written. The 

network devices, which are covered later, contain a class_device structure. Considering the 

device eth0 the new attributes would appear in /sys/class/net/eth0/myattrs/. The class_device 

also holds a link to a device structure which essentially is the the basic representation of any 

                                                           

1 A kobject is an object of type struct kobject. Kobjects have a name and a reference count. A kobject also has a parent pointer 

(allowing kobjects to be arranged into hierarchies), a specific type, and, perhaps, a representation in the sysfs virtual filesystem. 
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device. This structure maintains all the connections to busses, drivers and some very specific 

information on power management, DMA and other things we usually do not want to get in 

touch with. This example shows how a class_device can be extended by attributes. This is what 

we usually want; as there lies the information a user/administrator has to deal with. The 

attributes exported by device cover mostly the mentioned low-level details which are usually 

read-only. 

01  /sys 

02  |-- block 

03   |-- ... 

04  |-- bus 

05  |   |-- ... 

06  |   |-- pci 

07  |   |   |-- devices 

08  |   |   |   |-- ... 

09  |   |   |   |-- 0000:00:1d.1 -> ... 

10  |   |   |   |-- ... 

11  |   |   `-- drivers 

12  |   |       |-- Intel ICH 

13  |   |       |   |-- 0000:00:1f.5 -> ... 

14  |   |       |   |-- ... 

15  |   |       |-- ... 

16  |   |       `-- uhci_hcd 

17  |   |           |-- 0000:00:1d.0 -> ... 

18  |   |           |-- 0000:00:1d.1 -> ... 

19  |   |           |-- ... 

20  |   |-- ... 

21  |   `-- usb 

22  |       |-- devices 

23  |       `-- drivers 

24  |-- class 

25  |   |-- input 

26  |   |   |-- input0 

27  |   |   |   |-- device -> ... 

28  |   |   |   |-- ... 

29  |-- devices 

30  |-- firmware 

31  |-- kernel 

32  |-- module 

33  `-- power 

Listing 8:  Look into SysFS. 

 

01  static ssize_t store_attr_a(struct class_device *cd, 

02         const char *buf, 

03         size_t len) 

04  {...} 

05  

06  static ssize_t store_attr_b(...){} 

07  static ssize_t store_attr_c(...){} 

08  

09  static ssize_t show_attr_c( struct class_device *cd, 

10         const char *buf, 

11         size_t len) 

12  {...} 

13  

14  static CLASS_DEVICE_ATTR(attr_a, S_IWUSR, 

15         NULL, store_attr_a); 

16  static CLASS_DEVICE_ATTR(add, S_IWUSR, 

17         NULL, store_attr_b); 

18  static CLASS_DEVICE_ATTR(maxdiff, S_IWUSR | S_IRUGO, 

19         show_attr_c, store_attr_c); 
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20  

21  static struct attribute *myattrs[] = { 

22    &class_device_attr_attr_a.attr, 

23    &class_device_attr_attr_b.attr, 

24    &class_device_attr_attr_c.attr, 

25    NULL 

26  }; 

27  

28  static struct attribute_group mygroup = { 

29    .name = "myattrs", 

30    .attrs = myattrs, 

31  }; 

32  

33  int add_myattrs(struct class_device *dev) 

34  { 

35   struct kobject *kobj = &dev.kobj; 

36   int err; 

37   err = sysfs_create_group(kobj, &mygroup); 

38   if(err) 

39   { 

40    pr_info(%s can't create group %s\n", 

41     __FUNCTION__, mygroup.name); 

42     

43   } 

44   return err; 

45  } 

Listing 9: Adding a group of attributes. 

The Network subsystem 

The Linux network subsystem breaks with the UNIX philosophy of everything being a file. 

Contrary to block and char devices, network devices do not have an entry point in the /dev 

directory. There is usually no reason to perform read or write operations on a network device. 

These operations are performed on a socket, of which many hundreds can be multiplexed to a 

network interface. A network interface has to provide means for transmitting and receiving 

packets. The network subsystem is completely independent of protocols (either hardware or 

software) albeit providing major support for ethernet devices and the TCP/IP protocol suite.  

Implementing a device similar to an ethernet device is very tempting, so that even the plip1 

device, which is a network device that links two computers via their parallel ports, resembles an 

ethernet device in many ways. 

 

Initialization 

A network device is created using the function alloc_netdev and registered with the network 

subsystem using register_netdev. The usage of these functions is demonstrated in Listing 11. 

The function mydev_create carries out all steps necessary to create a new network device. The 

                                                           

1 The Parallel Line Internet Protocol (PLIP) is an encapsulation of the Internet Protocol designed to work over a 

personal computer parallel port via a null-printer cable, sometimes called a “laplink” cable. 
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structure type mydev_private is the place where device specific data is stored. The function 

alloc_netdev allocates the space for this private data, too. It is in fact appended to the structure 

net_device. The pointer priv links to the start of the private data. Listing 11 also shows how the 

class_device structure discussed earlier is used in a specific subsystem. 

01  struct mydev_private{ 

02   /* private fields */ 

03  }; 

04  

05  void mydev_setup(struct net_device *dev) 

06  { 

07   /* custom initialization code */ 

08  } 

09  

10  struct net_device *mydev_create() 

11  { 

12   mydev = alloc_netdev(sizeof(struct mydev_private), 

13       "mydev%d", mydev_setup); 

14   if(mydev) 

15   { 

16    if(register_detdev(mydev)) 

17    { 

18     /* error handling */ 

19     free_netdev(mydev); 

20    } 

21   } 

22   else 

23   { 

24    /* error handling */ 

25   } 

26  } 

Listing 10: Initialization of a network device. 

01  struct net_device *alloc_netdev( 

02   int sizeof_priv, 

03   const char *name, 

04   void (*setup)(struct net_device *)); 

05  void free_netdev(struct net_device *dev); 

06  int register_netdev(struct net_device *dev); 

07  void unregister_netdev(struct net_device *dev); 

08  

09  struct net_device 

10  { 

11   ... 

12   void *priv; 

13   ... 

14   struct class_device class_dev; 

15   ... 

16  } 

Listing 11: Main network device infrastructure. 

Default interface 

The network subsystem requires a device to implement a set of default functions. During 

initialization, the driver has to store the pointers to the implementing functions into the 

appropriate fields of the net_device structure (cf. Listing 10). Not all of these functions have to 

be implemented specifically, as the kernel includes some default implementations which are 

enabled through netdev_alloc. A list of the most common candidates for custom implementation 

is given in Listing 12. 
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01  int   (*open)(struct net_device *dev); 

02  int   (*stop)(struct net_device *dev); 

03  int   (*hard_start_xmit) (struct sk_buff *skb, struct net_device *dev); 

04  int   (*set_mac_address)(struct net_device *dev, void *addr); 

05  int   (*do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 

06  int   (*set_config)(struct net_device *dev, struct ifmap *map); 

07  int   (*change_mtu)(struct net_device *dev, int new_mtu); 

08  void  (*tx_timeout) (struct net_device *dev); 

Listing 12: Network device interface service routines. 

 open 

This function is called as soon as ifconfig activates the device. Any resources should be 
initialized at this point, i.e. in a physical device this includes IRQ, DMA, etc. 

 stop 

This is the opposite to open. 

 hard_start_xmit 

The actual workhorse of a network device which transmits packets. Will be covered in-
depth in the next section. 

 set_mac_address 

If a device is able to set its mac address, e.g. in a register of the chip on the adapter, 
then this function would perform this low-level work. The default implementation just 
sets the corresponding field net_device->dev_addr. 

 do_ioctl 

Only if the interface is desired to perform specific ioctl operations this field must be non-

null. The implementation of custom ioctl operations is not covered in this thesis1. 

 change_mtu 

If the MTU for this interface changes, this function is called. 

 tx_timeout 

If a packet transmission fails to be completed within reasonable time, this function is 
supposed to handle the problem and to resume transmission. 

 

 

                                                           

1 With the introduction of sysfs the ioctl mechanism has become obsolete in most cases, since every new ioctl operation is like a 

new system call. The kernel API therefore changes rapidly and becomes complex. Further, ioctl operations are assigned global 

numbers which have to be coordinated to not overlap between different devices. 
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Packet transport 

Packet transport can be split in two parts: sending and receiving. Sending is always initiated 

by the network stack. The network interface gets the data to be sent via the hard_start_xmit 

function mentioned in the previous section. Reception is usually due to an interrupt caused by a 

packet coming over the wire and reaching the controller on the network adapter. Because of the 

impossibility to deal with these device-specific topics, the device-independent structure sk_buff 

which is central to packet transport will be explained. 

The protocol-independency of the sk_buff structure in Listing 14 is clearly visible in the 

excessive usage of unions. This structure perfectly fits the packet-oriented nature of most 

modern network protocols. It integrates the header-data for three protocol-layers, the actual 

payload and a lot of administrative information. The latter mostly relate to the packet filter 

(Netfilter) and caching. The sk_buff system includes several functions to manipulate this non-

trivial structure. Listing 13 shows the signature of these functions. 

01  struct sk_buff *skb_clone(struct sk_buff *skb, int priority); 

02  struct sk_buff *alloc_skb(unsigned int size, int priority); 

03  void skb_trim            (struct sk_buff *skb, unsigned int len) 

04  unsigned char *skb_pull  (struct sk_buff *skb, unsigned int len); 

05  unsigned char *skb_push  (struct sk_buff *skb, unsigned int len); 

06  unsigned char *skb_put   (struct sk_buff *skb, unsigned int len); 

Listing 13: sk_buff manipulation. 

 skb_clone 

Duplicates an sk_buff structure in its entirety 

 alloc_skb 

Allocates a sk_buff structure. This is mainly used in the receiving part of a network 

driver. 

 skb_pull 

Removes data from the start of the buffer. This function returns a pointer to the next 

data in the buffer. Subsequent calls to skb_push will overwrite the old data. 

 skb_push 

Adds data to the start of the buffer. A pointer to the new start is returned. 

 skb_put 

Adds data to the end of the buffer. A pointer to the start of the extra data is returned. 
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01  struct sk_buff { 

02    struct sk_buff          *next; 

03    struct sk_buff          *prev; 

04    struct sk_buff_head     *list; 

05    struct sock             *sk; 

06    struct timeval          stamp; 

07    struct net_device       *dev; 

08    struct net_device       *input_dev; 

09    struct net_device       *real_dev; 

10  

11    union { 

12      struct tcphdr   *th; 

13      struct udphdr   *uh; 

14      struct icmphdr  *icmph; 

15      struct igmphdr  *igmph; 

16      struct iphdr    *ipiph; 

17      struct ipv6hdr  *ipv6h; 

18      unsigned char   *raw; 

19    } h; 

20  

21    union { 

22      struct iphdr    *iph; 

23      struct ipv6hdr  *ipv6h; 

24      struct arphdr   *arph; 

25      unsigned char   *raw; 

26    } nh; 

27  

28    union { 

29      unsigned char   *raw; 

30    } mac; 

31   /*   ...   */  

32    unsigned int            len, 

33          data_len, 

34          mac_len, 

35          csum; 

36    unsigned char           local_df, 

37          cloned, 

38          pkt_type, 

39          ip_summed; 

40    __u32                   priority; 

41    unsigned short          protocol, 

42          security; 

43   /* 

44       ... destination cache ... 

45      ... NETFILTER ... 

46   */ 

47    unsigned char           *head, 

48          *data, 

49          *tail, 

50          *end; 

51  }; 

Listing 14: Excerpt of the sk_buff structure. 
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Annex IV – Installation Tutorial 
 

Installation Tutorial 

In this annex it is explained how to install and run the implemented module. For that is 

necessary to meet the following series of requisites: 

 Computer running Debian GNU/Linux operating system; 

 Kernel version 2.6, or higher; 

 The latest version of Sysfs installed; 

 The package Bridge-utils installed. 

 

Linux kernel 

 

1. Download the source of the kernel version (must be at least version 2.6) from 

www.kernel.org; 

2. Extract the folder to the /usr/src directory; 

3. Copy the config-linux.your.linux.version from /boot directory to /usr/src/linuxversion 

4. Change the name of the config-linux.your.linux.version to “.config”; 

5. Go to /usr/src/linuxversion and execute the following command: “make menuconfig” then 

choose the option load an alternate version, press ok and then exit; 

6. Copy the file socket.c to the /usr/src/linuxversion/net directory; 

7. Copy the file dev.c to /usr/src/linuxversion/net/core (this step is not necessary with the 

netfilter hooks version); 

8. Copy the files netdevice.h and sockios.h to the /usr/src/linuxversion/include/linux directory; 

9. Go to the /usr/src directory and execute the following commands:  

a. make bzImage 

b. make modules 

c. make install 

d. make modules_install 

e. mkinitramfs –o /boot/initrd.img-$(uname -r) „kernel version‟  (Ex:  mkinitramfs –o 

/boot/initrd.img-$(uname -r) 2.6.31.14) 

10. Add a line with the new kernel version to the /boot/brug/grub.cfg file; 
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menuentry "Ubuntu, Linux 2.6.31-14 for VI" { 

        recordfail=1 

        if [ -n ${have_grubenv} ]; then save_env recordfail; fi 

set quiet=1 

insmod ext2 

set root=(hd0,4) 

search --no-floppy --fs-uuid --set 5d7a1424-cf4e-4c2c-888f-7199a7e908c0 

linux /boot/vmlinuz-2.6.31.14 root=UUID=5d7a1424-cf4e-4c2c-888f-7199a7e908c0 ro   

quiet splash 

initrd /boot/initrd.img-2.6.31-14 

} 

 

11. Reboot the computer and choose the new kernel version; 

 

Routing protocols 

 

1. Get the source distribution of AODV-UU [43]; 

2. Install according to the AODV-UU installation manual; 

3. Get the source distribution of OLSRD [9]; 

4. Install according to the OLSRD installation manual. 

 

Libsysfs 

 

Install the development package of libsysfs for your distribution or get and install the source 

distribution from [42]. 

 

Virtual interface 

 

1. Unzip kmod.zip and in that directory execute the following commands: 

i. Make; 

ii. insmod vi.ko (to load the module). 

2. Go the directory of the victl executable and run the following command: chmod a+x victl (to 

give the needed permissions); 

3. To run the virtual interface execute the command: ./victl; 

4. Do debug eventual errors use the command: dmesg. 
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Usage 

 

The victl is self-explanatory. The following is an example on how to add a virtual interface and 

associate some existing network interfaces: 

 

1. Add a virtual interface using victl addvi vi0; 

2. Start the interface by ifconfig vi0 up; 

3. Add an existing network interface to the virtual interface by victl addif vi0 eth1; 

4. Set the priority by victl setportprio vi0 eth1 “priority”; 

5. Add another existing interface by victl addif vi0 wlan0; 

6. Set a MAC address for the virtual interface by ifconfig vi0 hw ether $MAC; 

7. Set an IP address by ifconfig vi0 $IP or dhclient vi0. 
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Annex V – Testbed Configuration 
 
File: /etc/config/network 
config 'interface' 'loopback' 

option 'ifname' 'lo' 

option 'proto' 'static' 

option 'ipaddr' '127.0.0.1' 

option 'netmask' '255.0.0.0' 

config 'interface' 'lan' 

option 'type' 'bridge' 

option 'proto' 'static' 

option 'ipaddr' '192.168.2.1' #Each router has a different ip 

option 'netmask' '255.255.255.0' 

option 'ifname' 'eth0.0' 

config 'interface' 'wan' 

option 'ifname' 'eth0.1' 

option 'proto' 'dhcp' 

config 'interface' 'adhoc' 

option 'ifname' 'ath0' 

option 'proto' 'static' 

option 'ipaddr' '192.168.0.1' #Each router has a different ip 

option 'netmask' '255.255.255.0' 

 

File: /etc/config/system 
config system 

option hostname APXX #XX is the number of each AP (e.g. 01, 02, 03) 

option timezone UTC 

config button 

option button reset 

option action released 

option handler "logger reboot" 

option min 0 

option max 4 

config button 

option button reset 

option action released 

option handler "logger factory default" 

option min 5 

option max 30 

 

File: /etc/config/wireless  
onfig 'wifi-device' 'wifi0' 

option 'type' 'atheros' 

option 'disabled' '0' 

option 'mode' '11a' 

option 'agmode' '11bg' 

option 'maxassoc' '' 

option 'distance' '' 

option 'diversity' '1' 

option 'txantenna' '0' 
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option 'rxantenna' '0' 

option 'antenna' '' 

option 'channel' '07' 

config 'wifi-iface' 

option 'device' 'wifi0' 

option 'network' 'adhoc' 

option 'mode' 'ahdemo' 

option 'encryption' 'none' 

option 'bssid' '02:00:01:02:03:04' 

option 'server' '' 

option 'port' '' 

option 'hidden' '0' 

option 'isolate' '0' 

option 'txpower' '18' 

option 'bgscan' '0' 

option 'frag' '' 

option 'rts' '' 

option 'wds' '0' 

option 'key1' '' 

option 'key2' '' 

option 'key3' '' 

option 'key4' '' 

option '80211h' '' 

option 'compression' '' 

option 'bursting' '' 

option 'ff' '' 

option 'wmm' '' 

option 'xr' '' 

option 'ar' '' 

option 'turbo' '' 

option 'macpolicy' 'none' 

option 'ssid' 'VirtualInterfaceTest' 
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Annex VI – Energy Consumption Script 
 

#!/bin/sh 

#power.sh 

 

COUNTER=0 

 

while [ $COUNTER -lt 60 ]; do 

 

awk 'NR==5{print >> /home/mota/Desktop/teste.txt}' 

/proc/acpi/battery/BAT0/state 

let COUNTER=COUNTER+1 

echo $(date) 

sleep 10 

 

done 
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