

Combining Heterogeneous Access Networks with

Ad-Hoc Networks for Cost-Effective Connectivity

João Miguel Marques de Almeida da Cunha Mota

Dissertação para obtenção do Grau de Mestre em

Engenharia de Redes de Comunicações

Júri

Presidente: Prof. Dr. Paulo Jorge Pires Ferreira

Orientador: Prof. Dr. Artur Miguel do Amaral Arsénio

Co-Orientadora: Prof. Dra. Helena Rute Esteves Carvalho Sofia

Vogal: Prof. Dr. Rui Jorge Morais Tomaz Valadas

Junho 2011

Agradecimentos

From the formative stages of this thesis, to the final version, I owe an immense debt of

gratitude to both my advisers, Prof. Dr. Artur Arsénio and Prof. Dr. Rute Sofia, who were

abundantly helpful and offered invaluable assistance, support and guidance. Their sound

advices and careful guidance were invaluable during the course of the whole work.

I would also like to thank my family, who offered me unconditional love and support

throughout the course of this thesis.

Lisbon, June 2011

João Mota

Resumo

Devido à proliferação de tecnologias sem fios de baixo alcance tais como Wireless Fidelity

(Wi-Fi) ou Bluetooth os dispositivos móveis com capacidades multihoming estão a proliferar. A

existência de diferentes interfaces físicas nestes dispositivos torna-os capazes de se

interligarem a diferentes redes heterogéneas de uma forma auto-organizativa. Actualmente,

para tornar as redes ad-hoc mais confiáveis, têm-se utilizado técnicas como o multihoming e o

balanceamento de carga. No entanto, este tipo de técnicas não utiliza de uma forma eficiente e

simultaneamente todas as interfaces físicas de rede presentes nos dispositivos móveis.

Esta tese aborda o tema da utilização simultânea das várias interfaces sem fios de um

mesmo dispositivo, tendo como objectivo principal analisar técnicas que possam permitir um

melhor desempenho da rede. A análise deste desempenho assenta numa análise do

melhoramento do débito e latência da rede. Para tal foi implementada uma abstracção situada

entre a camada de aplicação e as várias interfaces de rede, que pode ser usada em redes ad-

hoc heterogéneas.

Esta solução tem por base uma interface virtual que permite o uso simultâneo de várias

interfaces de rede, escondendo a heterogeneidade das aplicações, e que permite a adição de

um qualquer número de interfaces de rede, aumentando assim o ritmo de transmissão total do

dispositivo.

Abstract

With the advent of modern technology, mobile devices with multihomed capabilities are

proliferating. Existence of different network interfaces in multihomed devices gives them the

possibility to explore seamlessly roaming across heterogeneous networks. To make ad-hoc

networks more reliable, one has often to use techniques such as multihoming and load-

balancing. However, these techniques do not make full use of all network interfaces presented

in a mobile device.

This thesis addresses the topic of using multiple network interfaces simultaneously as a way

to increase the available throughput in wireless networks. It studies and compares different

techniques that have been previously presented in the literature, and proposes an architecture

applicable to a broader range of networks. To do so, we have implemented an end-to-end

communication abstraction that can be used in heterogeneous mobile ad-hoc networks, from a

mobile node (station) perspective. By heterogeneous it is here meant networks where nodes

can transmit by relying on several short-range wireless technologies.

Our solution is based on a virtual interface (vi) approach, which allows the usage of all active

interfaces of a mobile device simultaneously, while hiding the heterogeneity from the

applications and allowing any number of interfaces to be added, in the expectation of increasing

the overall wireless throughput.

Palavras-chave
Keywords

Palavras-chave

Multihoming

Redes sem fios heterogéneas

Eficiência

Interface Virtual

Balanceamento de carga

Keywords

Multihoming

Heterogeneous wireless networks

Efficiency

Virtual Interface

Load-Balancing

i

Index

1 Introduction ... 1

1.1 Generic Applicability Scenarios ... 2

1.2 Goals, Assumptions, and Expected Results ... 4

2 State-of-the-Art.. 6

2.1 Emerging Wireless Architectures and Technologies ... 6

2.1.1 Short-range Wireless Technologies ... 7

2.1.2 Wi-Fi Modes of Operation ... 7

2.2 Empowering the end-user: Femtocells and Smart APs ... 9

2.2.1 Femtocells ... 9

2.2.2 Smart APs .. 11

2.3 Dealing with Multiple Interfaces ... 11

2.3.1 Multihoming .. 12

2.3.2 Load-balancing .. 12

2.3.3 Network Switching .. 13

2.3.4 ISP Switching ... 14

2.3.5 Aggregation: Interface virtualization .. 15

2.4 Linux Kernel Aspects ... 20

2.4.1 Netfilter ... 20

2.4.2 Iptables .. 22

2.5 Discussion .. 23

3 Our Proposed Architecture ... 24

3.1 Architecture Model ... 24

3.1.1 Virtual Interface .. 25

3.1.2 Virtual Bandwidth Aggregation (VBA) / Decider ... 26

3.1.3 Priority Table ... 27

3.1.4 RTT Estimator .. 28

3.1.5 Data Flow - Main Blocks .. 28

3.2 Implementation Aspects ... 29

ii

3.2.1 The Kernel Module .. 31

3.2.2 Power Saving Mode ... 44

3.2.3 The libvi library .. 47

3.2.4 The victl command .. 47

3.3 Limitations ... 49

3.4 Security Concerns and Other Aspects ... 51

4 Performance Evaluation ... 53

4.1 Evaluation Objectives and Settings ... 53

4.1.1 Traffic and Network Settings ... 55

4.1.2 Main Topologies .. 56

4.2 Evaluation Results ... 58

4.2.1 Experiment 1 ... 58

4.2.2 Experiment 2 ... 62

4.2.3 Experiment 3 ... 66

4.2.4 Experiment 4 ... 67

4.3 Performance Evaluation Summary.. 69

5 Conclusions and Future Work ... 71

6 Bibliography ... 72

iii

List of Figures

Figure 1.1: Ad-Hoc Scenario A with several access technologies (Bluetooth and 802.11x) 3

Figure 1.2: Scenario B with several access technologies (3G and 802.11x) 4

Figure 2.1: infrastructure and ad-hoc modes .. 9

Figure 2.2: System architecture and context for femtocell operation .. 10

Figure 2.3: Path diversity, user A has two separate paths to reach user B 15

Figure 2.4: System memory using a user-level network interface .. 17

Figure 2.5: Hooking points in Netfilter ... 22

Figure 3.1: Interaction between the implemented mechanisms .. 25

Figure 3.2: Virtual interface architecture approach ... 26

Figure 3.3: The neighboring database (NDB), and the priorities corresponding to each node .. 27

Figure 3.4: Data flow, explaining the interactions between the main implementation blocks. 29

Figure 3.5: The Virtual Interface Architecture ... 30

Figure 3.6: The neighbor database (simplified) ... 35

Figure 3.7: TCP/IP input processing ... 41

Figure 3.8: Kernel main causes for wakeups, measured with PowerTop. 50

Figure 4.1: Topology I, one network interface and one AP. .. 56

Figure 4.2: Topology II, two network interfaces and two APs. .. 57

Figure 4.3: Topology III, three network interfaces and one AP. .. 58

Figure 6.1: AODV protocol messaging .. 79

Figure 6.2: OLSR route selection .. 81

Figure 6.3: A look into the device model ... 86

iv

List of Tables

Table 2.1: Chains used in each table .. 22

Table 2.2: iptables rule example ... 23

Table 4.1: Wlan throughput in Mbps, different packet sizes. .. 59

Table 4.2: Ping results, 1 interface and 1 access point. ... 60

Table 4.3: Handover time in seconds, using Wi-Fi interfaces ... 61

Table 4.4: Energy consumption in milliwatt hour. .. 62

Table 4.5: Average throughput in Mbps, using the vi with two interfaces and two APs.............. 63

Table 4.6: Throughput in Mbps, using two interfaces and two APs (one saturated). 65

Table 4.7: Throughput in Mbps, using three interfaces and one saturated AP. 67

Table 6.1: Registration facilities of the device model .. 88

v

List of Graphs

Graph 4.1: Total throughput in Mbps, using one interface and one AP 59

Graph 4.2: Total throughput in Mbps, using the vi with two interfaces and two APs. 63

Graph 4.3: Total throughput in Mbps, with two interfaces and two APs (one saturated) 64

Graph 4.4: Total throughput in Mbps, with three network interfaces, and one saturated AP 66

Graph 4.5: Correlation between the Throughput (Mbps) and the Consumed Energy (mWh). ... 68

vi

Acronyms

PDA Personal Digital Assistant

GPRS General Packet Radio Service

UMTS Universal Mobile Telecommunication System

AP Access Point

UE User Equipment

Vi Virtual Interface

ABR Available Bit Rate

RTT Round-trip time

MAC Media Access Control

WPAN Wireless Personal Area Network

MANET Mobile Ad-hoc Network

AODV Ad-hoc On-Demand Distance Vector

OLSR Optimized Link State Routing Protocol

PAN Personal Area Network

EMF End-to-end Mobility management Framework

UHCI Universal Host Controller Interface

GPL General Public License

PCI Peripheral Component Interconnect

MTU Maximum Transmission Unit

1 CHAPTER 1. INTRODUCTION

1 Introduction

The transparent support of a multitude and variety of existing and emerging wireless and

wired networking technologies is a driving force towards convergence of networks. Moreover, it

is commonplace nowadays to have electronic devices with multiple networking capabilities.

Personal computing devices, e.g., laptops, PDAs, smartphones, are typically equipped with

several networking interfaces ranging from different flavours of Wireless Fidelity (Wi-Fi) to

Ethernet, GPRS, UMTS, and Bluetooth.

Adding to the diversity of network interfaces that end-user devices today include, the

common Internet end-user has at his/her disposal a set of applications with significantly different

bandwidth requirements and which comprise multimedia services, gaming, as well as

collaboration, among others. However, most services provided today to the end-user simply

take advantage of one network interface at a time.

This perspective is bound to change due to the fact that more and more, different Service

Providers (SP) serve the same household or enterprise location. As an answer to this increasing

complexity, several traffic-engineering techniques are being applied to take advantage of the

different interfaces available on a single device. This is the case of multihoming (cf. section

2.3.1) and load-balancing (cf. section 2.3.2), techniques which have been used to give networks

some redundancy and redirect traffic flows based on the device necessities (power, signal

strength, available bit rate, etc), thus assisting in making the network more robust. Hence,

multihoming and load-balancing aspects are to be surveyed, analyzed and compared to the

work developed in this thesis, but as will be seen, the multiple and simultaneous use of different

interfaces is still in an embryonic state, since it is not yet possible to make full use of all the

physical interfaces present in mobile devices.

Our main objectives are two-fold. Firstly, to understand up to which point and for which

cases it is relevant to consider a single interface (as a virtual container for all the potential

network interfaces in an end-user device). Secondly, to analyze and evaluate up to which point

is possible to achieve an efficient utilization of multiple network interfaces by devices via rate

control and optimal assignment of traffic flows to available networks.

The remainder of this document is organized as follows:

Chapter 2 surveys previous work in this area, addressing several possible ways to improve

the effectiveness of a heterogeneous ad-hoc network, as well as some problems that may arise

from the implementation of such solutions.

2 CHAPTER 1. INTRODUCTION

Chapter 3 describes the model of the proposed solution followed by the implemented

architecture and approach taken, that transparently improves the cost-effective connectivity in

heterogeneous access networks.

Chapter 4 introduces some goals and the methodology followed. A generic description of the

evaluation parameters and scenarios is then provided, followed by a description of the

topologies implemented and of traffic settings. Finally it explains in a detailed manner the results

obtained during the experiments.

Chapter 5 concludes the thesis and proposes some directions for future work.

1.1 Generic Applicability Scenarios

This section provides an overview on global applicability scenarios that are the basis of the

functionality to be described. Let us first provide a hypothetical scenario. Imagine a user in an

enterprise setting participating in a video conference call via his/her multihomed1 device, which

incorporates both a Bluetooth and a Wi-Fi (e.g. IEEE 802.11g) interface. While engaged in the

conference proceedings, the user is uploading content on a remote server for the participants to

access, and at the same time needs to retrieve some files from the server. Data is transmitted

by the device which dynamically monitors the interfaces at its disposal. The device then routes

the traffic via these physical interfaces based on the varying network characteristics like

Available Bit Rate (ABR), delay and signal strength, and also based on specific user

expectations (e.g. increase energy savings). By doing this the device would be able to use the

interfaces at its disposal, but would not offer a transparent solution for the remaining of the

network, and would not be using the interfaces at full capacity, since it is only allocating the data

through them.

What we propose can be seen in Figure 1.1, it provides technical details concerning one

potential applicability scenario, where different multihomed end-user devices are interconnected

in an ad-hoc way. Specifically, we consider four mobile devices, three of which are multihomed

(Bluetooth and Wi-Fi interfaces). The physical interfaces of each mobile device are integrated

into a global, virtual interface, represent on OSI Layer 2 by a virtual MAC, and on OSI Layer 3

by a virtual IP, where the physical interfaces are behind the virtual interface, offering a

transparent solution for both the application layer and the remaining of the network.

1 Multihomed describes a computer host that has multiple IP addresses to connected networks. A multihomed host

is physically connected to multiple data links that can be on the same or different networks.

3 CHAPTER 1. INTRODUCTION

Mobile Device

Internet

MAC1: 10.0.0.1

MAC2: 10.0.0.2

MAC3: 10.0.0.3

MAC4: 10.0.0.4

MAC6: 10.0.0.6

MAC5: 10.0.0.5

MACV

802.11x

Interface

Bluetooth

Interface

Virtual

Interface

Figure 1.1: Ad-Hoc Scenario A with several access technologies (Bluetooth and 802.11x).

The scenario presented in Figure 1.1 is a particular but good example of the heterogeneity

presented in wireless networks. Albeit with capability to be used simultaneously, the current

drivers of the mobile device do not take this into consideration. Our proposal is to consider a

transparent way to make full use of all the interfaces by developing an abstraction interface, i.e.

a virtual aggregation interface. This virtual interface is responsible for monitoring the physical

network interfaces, and based on their availability as well as on our implemented policies

mechanisms, it will use one or several simultaneously. Expectations are that it may increase

throughput, improve energy efficiency, as well as potentially reduce the network latency.

 In this type of scenario, some questions we shall consider and attempt to answer are:

 Is it possible to consider such a global virtual interface both from a network and from a

user perspective?

 If technically this is feasible in a way that optimizes network efficiency, what are the

technical implications of developing such interface?

 Intuitively, in terms of network robustness there are clear benefits to consider, but there

are also open issues which need to be analyzed, e.g., RTT delay and reordering

consequences.

A second applicability scenario, our proposal addresses, relates to multihomed mobile

devices that interconnect to different access networks. This is often the case today for

residential users that have e.g. at least one fixed line connection terminated by Wi-Fi, and a 3G

4 CHAPTER 1. INTRODUCTION

connection. By developing adequate virtualization, one can assist in the optimization of mobility

(vertical handover scenarios) from a user and network perspective. See Figure 1.2 for a

conceptual representation, where we have different access networks (3G and Wi-Fi), and a

virtual interface, is deciding which interface(s) to use in a certain moment.

Mobile Device

Internet

MAC1: 10.0.0.1

MAC2: 77.54.82.1

802.11x

Interface

3G

 Interface

Virtual

Interface

MACV Access Point

(AP)

Base Transceiver Station

(BTS)

Figure 1.2: Scenario B with several access technologies (3G and 802.11x).

1.2 Goals, Assumptions, and Expected Results

The main goals of this work are:

 To conceive and to develop cooperative access mechanisms which assist in distributing

information to several users based on virtualization techniques that assist multiple network

interfaces to be transformed into a single interface, for both, the network and the

applications.

 To improve the efficiency of heterogeneous wireless networks by considering dynamic and

intelligent load-balancing techniques across different available and active interfaces, with

and without virtualization.

 To optimize horizontal handovers and Quality of Service based on the developed

mechanisms.

 To understand the impact of the developed solutions on current Internet wholesale models.

Our goal is to integrate heterogeneous mobile ad-hoc networks that use different wireless

network technologies and conceive/develop cooperative access mechanisms which assist in

5 CHAPTER 1. INTRODUCTION

distributing information to several users. Although we are interested in a generic solution, we

take a network that combines different flavors of 802.11x as a basis for this thesis.

This thesis is focused on a promising end-to-end communication abstraction that can be

used in heterogeneous mobile ad-hoc networks. The solution is based on a virtual interface (vi)

approach, which allows the usage of all interfaces presented in a mobile device simultaneously,

while hiding the heterogeneity from the network and allowing any number of interfaces to be

added, increasing the total throughput.

The contributions of the thesis can be enumerated as follows:

 A brief survey, analysis and comparison of previous work done in this area.

 An end-to-end communication abstraction, also known as virtual interface.

 A method of intercepting the data and relaying it to the virtual interface without adding

excessive overhead.

 Several mechanisms which will allow a throughput gain, by exploring the simultaneous

usage of several physical interfaces present in a mobile device.

 Power saving mode, choosing the interfaces which will transfer a certain data flow while

consuming the lowest amount of energy.

6 CHAPTER 2. STATE-OF-THE-ART

2 State-of-the-Art

This work addresses the efficient utilization of multiple network interfaces of a single device

by devices, via rate control and optimal assignment of traffic flows to available networks, with a

special emphasis on Ad-Hoc networks. This section introduces fundamental concepts, starting

with a brief overview of the wireless architectures, followed by an analysis of current related

research.

Section 2.1 gives an overview of some short-ranged wireless technologies, such as IEEE

802.11 (Wi-Fi) and IEEE 802.15.x (Bluetooth) and introduces the evolution of the wireless

networks, starting with the infrastructure mode, followed by the ad-ahoc mode.

Section 2.2 reviews some related technologies, such as Femtocells and Smart APs, used to

empower the end-user.

Section 2.3 describes how to deal with multiple interface devices, with a special emphasis to

the multihoming and load balancing mechanisms, features, drawbacks (such as handover),

advantages, as well as the interface virtualization technique, given that one of the main goals of

this thesis is to improve the cost-effective connectivity, which will require the virtualization of

interfaces, to handle different physical interfaces in a transparent way.

Section 2.4 reviews some Linux networking components, how they work and interact with

each other. In this section, some of these components, such as Netfilter and iptables are

presented. Finally, in section 2.5 there is a small discussion identifying the problems and

drawbacks in the surveyed work.

2.1 Emerging Wireless Architectures and Technologies

The explosive growth of the Internet over the last decade has led to an increasing demand

for high-speed, ubiquitous Internet access. Broadband Wireless technologies are increasingly

gaining popularity by the successful global deployment of the Wireless Personal Area Networks

(Bluetooth- IEEE 802.15.1), Wireless Local Area Networks (WiFi- IEEE 802.11x), and Wireless

Metropolitan Area Networks (WiMAX-IEEE 802.16) [1]. Using open broadband Wireless

technologies and implementing mobile computing architectures, one can overcome the

challenges of ground, infrastructure, and finance to increase access; deploy broadband quickly

and cost-effectively to areas currently not served; and extend the benefits of digital revolution to

previously unreachable populations.

7 CHAPTER 2. STATE-OF-THE-ART

In this section we will only be introducing Wireless Personal Area Networks (Bluetooth-IEEE

802.15.1) and Wireless Local Area Networks (WiFi-IEEE 802.11x), as these are the

technologies that fall under the scope of this thesis.

2.1.1 Short-range Wireless Technologies

Emerging technologies such as Bluetooth (BT) and 802.11b (Wi-Fi) have fuelled the growth

of short-range communication industry. The differences between their standard features (data

rate, distance range, security, and communication protocol) have lead to a natural partitioning of

applications.

2.1.1.1 Bluetooth and Wi-Fi

BT, the leading WPAN technology, was designed primarily for low-cost cable replacement.

On the other hand Wi-Fi, today the most popular short-range wireless technology, was initially

conceived as a simple and plug&play way to extend the reach of fixed lines – Wi-Fi is based on

the Ethernet standards. Nonetheless, the fact is that today most UEs for personal use such as

laptops and PDAs, require both BT and Wi-Fi standards to cover a wider range of applications

in both the home and office spaces.

Wireless communication systems use one or more carrier frequencies (frequency bands) to

communicate. Bluetooth and Wi-Fi share the same 2.4 GHz band, which under Federal

Communications Commission (FCC) regulations, extends from 2.4 to 2.4835 GHz. Under the

ISM band rules defined in FCC Part 15.247, this frequency band is free of tariffs. It is license

exempt in Europe. However, systems must operate under certain constraints that are supposed

to enable multiple systems to coexist in time and place.

These two technologies are described in more detail in the annex section, since they are

important but not essential to the understanding of the proposed solution.

2.1.2 Wi-Fi Modes of Operation

There are two different models for Wi-Fi networks that exist today: Infrastructure mode and

Ad-Hoc mode.

In Infrastructure mode the wireless network consists of at least one access point connected

to the wired network infrastructure and a set of wireless end stations. This configuration is called

8 CHAPTER 2. STATE-OF-THE-ART

a Basic Service Set (BSS). An Extended Service Set (ESS) is a set of two or more BSSs

forming a single subnetwork. Since most corporate WLANs require access to the wired LAN for

services (file servers, printers, and Internet links) they will operate in infrastructure mode (cf.

Figure 2.1).

A big advantage of this model is the possibility for the network (and consequently the access

operator) to better manage resources. The flip-side is that it requires some specific hardware

and some previous planning of the network, undermining the possibility for users to start

communication sessions spontaneously, where and whenever they want.

Ad-Hoc mode (also called peer-to-peer mode or an Independent Basic Service Set, or IBSS)

is simply a set of 802.11 wireless stations that communicate directly with one another without

using an access point or any connection to a wired network. This mode is useful for quickly and

easily setting up a wireless network anywhere that a wireless infrastructure does not exist or is

not required for services [3], such as a hotel room, convention center, or airport, or where

access to the wired network is blocked (cf. Figure 2.1).

The routing in mobile ad-hoc networks necessitates specialized algorithms and protocols

that can cope with the dynamic nature of appearing and vanishing neighbors. Two major

protocols have been used in this work, not only to test the virtual interface in a realistic

environment, but also to update the information regarding the available neighbors of the mobile

device. A more indebt description of the two algorithms can be found in the annex section of this

thesis (cf. Annex II).

Today, the most common instances of ad-hoc networks are Mobile Ad-Hoc Networks

(MANETs), and mesh networks. A MANET is purely an ad-hoc network where some nodes

move. While a mesh network is considered to be a set of nodes (multihop or not) which would

be static [2].

A more recent type of wireless architecture is a user-provided network (UPN). A UPN is a

wireless network (be it infrastructure, ad-hoc, or mesh) [4], which is triggered by the willingness

of some end-users to cooperate (based on cooperation incentives) in a spontaneous way. UPNs

are architectures that operate in isolation or as complement to access technologies (e.g. 3G)

being the main difference to the older wireless architectures the fact that networking nodes are

controlled partially by the end-user. It should be noticed that the aspect of having some access

control moved to the end-user is an essential aspect that is being pursued also from an access

perspective, as can be seen in section 2.2, where femtocells and smart APs are addressed.

9 CHAPTER 2. STATE-OF-THE-ART

Figure 2.1: infrastructure and ad-hoc modes.

2.2 Empowering the end-user: Femtocells and Smart APs

In this section some technologies, such as Femtocells and smart APs, responsible for

empowering the end-user connectivity are presented. These kinds of technologies, in some

circumstances, improve the network signal by automatically taking certain decisions for the

user, making use of their knowledge about the available network resources.

2.2.1 Femtocells

Femtocell is a recent technology which uses the IP backbone network along with small-size

base stations, based on cellular technology, located indoors. Doing so, femtocells support

compatibility with the cellular systems, and at the same time, provide better indoor signal

strength [10], commonly unattainable by macrocell coverage operating at higher frequencies.

The femtocell appears to the standard 3G phone as just another cell site from the host

mobile operator, and can be used by almost any 3G phone including roamers visiting from other

countries.

The mobile operators telephone switch (MSC) and data switch (SGSN) also communicate to

the femtocell gateway in the same way as for other mobile calls. Therefore, all services

including phone numbers, call diversion, voicemail etc. all operate in exactly the same way and

appear the same to the end user.

10 CHAPTER 2. STATE-OF-THE-ART

The connection between the femtocell and the femtocell controller uses secure IP encryption

(IPsec), which avoids interception and there is also authentication of the femtocell itself to

ensure it is a valid access point. Figure 2.2 illustrates the system architecture and context for

femtocell operation.

Inside the femtocell are the complete workings of a mobile phone base station (BTS).

Additional functions are also included such as some of the Radio Network Controller (RNC)

processing, which would normally reside at the mobile switching centre. Some femtocells also

include core network element so that data sessions can be managed locally without needing to

flow back through the operators switching centers.

To summarize, the capacity benefits of femtocells are attributed to:

 Reduced distance between the femtocell and the user, which leads to higher received

signal strength;

 Lowered transmit power, and mitigation of interference from neighboring macrocell and

femtocell users due to outdoor propagation and penetration losses;

 As femtocells serve only around one to four users, they can devote a larger portion of

their resources (transmit power and bandwidth) to each subscriber. A macrocell, on the

other hand, has a larger coverage area (500 m–1 km radius) and a larger number of

users; providing quality of service (QoS) for data users is more difficult.

Figure 2.2: System architecture and context for femtocell operation.

BSC RNC
Femto

Gateway

Core Network

Broadband
Internet

2G or 3G
Basestations

Iub
interface

Iu
interface

Iu-h
interface

Femtocell

11 CHAPTER 2. STATE-OF-THE-ART

2.2.2 Smart APs

Wireless access points are rapidly increasing in number and variety, providing people with

connectivity in almost all buildings they enter (e.g. home, work place, etc.). The wireless

medium, in fact, is naturally prone to be shared by several users who may interfere with each

other, harming the performance of UDP-based real-time flows (e.g., online gaming) as TCP

continuously probes the channel for more bandwidth, thus eventually generating queues

(delays) on the connection [11].

A smart Access Point can take advantage of its knowledge about available wireless network

resources and the on-going traffic in order to appropriately limit TCP‟s advertised windows so as

to smooth the network traffic progression and avoid queuing delays [12]. Furthermore, a smart

Access Point also provides radio functionality and has most of its network intelligence in the

same box, thus these devices can handle most of the protocols for roaming, encryption,

management, user authentication, and so forth. A smart AP presents the end-users it serves to

the wired network switch as if they were physically connected, reducing the load on central

switches within the wired LAN, albeit at the cost of needing to be managed [13].

Integrating network services directly into the AP also enables important services to be

pushed out to the first point of contact with the wireless user. The thought is that by provisioning

access control lists and policies directly from the radio function, end-users can move, for

example, onto another subnet in another corporate location, and still retain all their access

rights.

2.3 Dealing with Multiple Interfaces

Today‟s end-user devices are equipped with several network interfaces and have at their

disposal a multitude of applications with different bandwidth requirements. To make use of this

variety, some mechanisms such as multihoming, load-balancing, bandwidth aggregation and

interface virtualization, have been used to grant end-user with some redundancy, help solving

some mobility problems and make a better use of all available interfaces. In this section we

introduce some of these solutions and survey some work done in this area.

12 CHAPTER 2. STATE-OF-THE-ART

2.3.1 Multihoming

In multihoming, a single computer host makes use of several IP addresses associated with

various connected networks. Within this scenario, the multihomed computer host is physically

linked to a variety of data connections or ports. These connections or ports may all be

associated with the same network or with a variety of different networks. Depending on the

exact configuration, multihoming may allow a computer host to function as an IP router.

One possibility for the process of multihoming makes use of what is known as Stream

Control Transmission Protocol, or SCTP. Essentially, the process involves employing

multihoming by making use of a single SCTP endpoint to support the connectivity to more than

one IP address. By establishing connection to multiple addresses, multihoming can help to

enhance the overall stability of the connectivity associated with the host [14].

One of the advantages of multihoming is that the computer host is somewhat protected from

the occurrence of a network failure. With systems that make use of a single IP address and

connection, the failure of the connected network means that the connection shuts down,

rendering the end system ineffectual as far as connectivity to the Internet is concerned. With

multihoming, the failure of a single network only closes a single open door. All the other doors,

or IP addresses associated with the other networks, remain up and functional.

Multi-homed networks are often connected to several different Internet Service Providers

(ISPs). Routers use Border Gateway Protocol (BGP), a part of the TCP/IP protocol suite, to

route between networks using different protocols [15].

In general, multihoming is helpful for three elements of effective web management. First,

multihoming can help to distribute the load balance of data transmissions received and sent by

the computer host by lowering the number of computers connecting to the Internet through any

single connection. Second, the redundancy that is inherent to multihoming means less

incidences of downtime due to network failure. Last, multihoming provides an additional tool to

keep network connectivity alive and well in the event of natural disasters or other events that

would normally render a host inoperative for an extended period of time [14].

2.3.2 Load-balancing

In computer networking, load-balancing is a technique to distribute workload evenly across

two or more computers, network links, CPUs, hard drives, or other resources, in order to get

optimal resource utilization, maximize throughput, minimize response time, and avoid overload.

Using multiple components with load-balancing, instead of a single component, may increase

13 CHAPTER 2. STATE-OF-THE-ART

reliability through redundancy. The load-balancing service is usually provided by a dedicated

program or hardware device (such as a multilayer switch or a DNS server).

One of the most common applications of load-balancing is to provide a single Internet

service from multiple servers, sometimes known as a server farm.

A variety of scheduling algorithms are used by load balancers to determine which backend

server to send a request to [16]. Simple algorithms include random choice or round robin. More

sophisticated load balancers may take into account additional factors, such as a server's

reported load, recent response times, up/down status (determined by a monitoring poll of some

kind), number of active connections, geographic location, capabilities, or how much traffic it has

recently been assigned. High-performance systems may use multiple layers of load-balancing.

2.3.3 Network Switching

The authors of On Effectively Exploiting Multiple Wireless Interfaces in Mobile Hosts study if

heterogeneous wireless interfaces can be aggregated with intelligent strategies to improve

throughput beyond sum of the parts, as they call them super-aggregation principles. The

authors propose three principles in the context of TCP that achieve super-aggregation benefits

in Wi-Fi network when by adding a 3G interface [21]:

 Selective offloading: some of the interfaces may have a limited bandwidth, and by

selectively offloading some portions of the data transferred it can cause a significant

impact on the performance.

 Proxying: when an interface has only limited bandwidth but is up when the other interface

is down, the limited bandwidth can be used for critical control information that in turn can

serve to significantly improve the overall performance of the data transfer.

 Mirroring: for certain portions of the data being transferred intelligently mirroring the

transfer on the interface with lower bandwidth can again have a profound impact on the

perceived performance.

The super-aggregation principles presented can be implemented as a layer-3.5 software

middleware in the mobile host. It can be implemented in the Linux kernel and uses NetFilter [22]

to capture and process TCP packets traversing the network stack, or generate packets if

necessary. The super-aggregation principles only require deployment at the mobile device and

do not require any modification at the remote host or intermediate routers. The TCP

implementations on the remote host and the mobile device are unaware of the super-

aggregation principles that improve their performances transparently [21]. With this deployment

14 CHAPTER 2. STATE-OF-THE-ART

model, super-aggregation can enhance end-to-end performance of mobile host with any legacy

TCP-based server.

This solution although making possible the usage of two interfaces simultaneously (in this

case Wi-Fi and 3G) and increasing the total throughput, does not escalate to more interfaces,

does not take in consideration the use of two interfaces with similar bandwidth since it uses the

interface with lower transmission rate to send certain small messages (e.g. ACK messages) and

the other interface to send and receive the remaining data.

The tests prove that their solution in fact provides clear improvements in terms of throughput

beyond the sum of the parts, which did not happen with other simple aggregation solutions

[23][24][25], but unfortunately the authors only tested their solution with TCP data, neglecting

the UDP data.

2.3.4 ISP Switching

The authors of [17] investigate the feasibility of switching among ISPs to exploit the benefits

of choosing the ISP with better connectivity conditions (in the sense of a cost function that may

include throughput, access cost, among others) at any given time. This approach is suitable for

connections with long duration such as file transfer or streaming applications that need to switch

from a congested ISP to a non-congested one, if available.

To analyze topological path diversity, the authors use traceroute data. They first trace the

end-to-end paths from the test-bed to each of the destinations through both ISPs. To resolve IP

aliases the authors use sr-ally [17].

To measure latency, loss and jitter on both ISPs, the authors send probe packets

simultaneously through two network interfaces so that the probe packets travel through both

ISPs at the same time. To measure the round-trip time (latency) and packet loss ratio they use

ping. Since it is desirable to have no (or low) overlap among the alternative paths provided by

multihoming, the authors also defined the metric Single Source Path Overlap (SSPO) to express

the path overlap between a multihomed user and any host in the network. As shown in Figure

2.3, the path overlap occurs for a multihomed host at the edge network with which the source

node is connected. SSPO is an estimation of the expected fraction of hop overlap, which is the

ratio of the shared hops to the total non-shared hops of all paths.

15 CHAPTER 2. STATE-OF-THE-ART

Figure 2.3: Path diversity, user A has two separate paths to reach user B.

The key insight into the potential benefits of multihoming is that not only it provides first hop

path redundancy, but more generally it offers highly diverse end-to-end paths both in topology

and network layer metrics such as latency, loss, and jitter [18].

2.3.5 Aggregation: Interface virtualization

In this section, we introduce the interface virtualization technique, which intends to hide the

heterogeneity created by the use of all network interfaces, presented in mobile devices, from the

applications, with special emphasis to one specific work, presented in section 2.4.5.3 that

implements a virtual interface as a layer two device, capable of hiding all physical interfaces

under it, which ended up being a base for this thesis.

2.3.5.1 Interface Virtualization

Virtualization was first introduced in the 70‟s by IBM as a way to assist in supporting

concurrent processes on a single machine. Out of these emerged different systems which are

today common in any machine.

Within the context of wireless networks, virtualization is being heavily applied due to the rise

of Software Defined Radio (SDR). SDR gives the means not only to take better advantage of a

single wireless interface (multiplexing) but also to consider aggregating radio resources in a way

that makes the network more robust. But the key aspect in virtualization applied to wireless

networks is that such a system can take advantage of a multitude of proprietary radio

technologies in a way that makes it transparent to the application and to the end-user. A

technology that is often used with SDR is the Cognitive Radio (CR), a form of wireless

communication in which a transceiver can intelligently detect which communication channels

SBC Atdn.net

Comcast Level3.net

rr.comA B

Berkeley x.nyc.rr.com

16 CHAPTER 2. STATE-OF-THE-ART

are in use and which are not, and instantly move into vacant channels while avoiding occupied

ones. This optimizes the use of available radio-frequency (RF) spectrum while minimizing

interference to other users.

On the other hand, a software radio Base Transceiver Station (BTS) is much more readily

virtualized than a hardware radio, since the BTS is just a software application. It is possible to

construct a virtualized base station by using standard virtualization technology to create a virtual

machine (VM) per operator, and running an independent BTS application for each operator

within that VM. This ensures that each operator has complete control over their BTS, while

guaranteeing that one operator's traffic, signaling and configuration data are isolated from other

operators.

A virtual interface approach is the most convenient solution for heterogeneous mobile ad-hoc

networks in terms of transparency [20]. To provide a faster path between applications and the

network, most researchers have advocated removing the operating system kernel and its

centralized networking stack from the critical path and creating a userlevel network interface

[19]. With these interfaces, designers can tailor the communication layers each process uses to

the demands of that process. Consequently, applications can send and receive network packets

without operating system intervention, which greatly decreases communication latency and

increases network throughput [20].

Figure 2.4 shows system memory with two applications accessing the network through a

user-level network interface. A device driver in the operating system controls the interface

hardware in a traditional manner and manages the application‟s access to it.

Applications allocate message buffers in their address space and call on the device driver to

set up their access to the network interface. Once set up, they can initiate transmission and

reception and the interface can transfer data to and from the application buffers directly using

direct memory access.

User-level network interface designs vary in the interface between the application and the

network. How the application specifies the location of messages to be sent, where free buffers

for reception get allocated, and how the interface notifies the application that a message has

arrived. Some network interfaces, such as Active Messages or Fast Messages, provide send

and receive operations as function calls into a user-level library loaded into each process.

17 CHAPTER 2. STATE-OF-THE-ART

Figure 2.4: System memory using a user-level network interface. Figure extracted from [19].

2.3.5.2 Bluetooth Network Encapsulation Protocol – BNEP

The Personal Area Networking (PAN) Bluetooth Network Encapsulation Specification

describes the protocol to be used by the Bluetooth PAN profiles. The document [26] defines a

packet format for Bluetooth network encapsulation used to transport common networking

protocols over the Bluetooth media. Bluetooth network encapsulation supports the same

networking protocols that are supported by IEEE 802.3/Ethernet encapsulation. Packets from

the supported networking protocols are contained in Bluetooth network encapsulation packets,

which are transported directly over the Bluetooth L2CAP protocol.

In the scope of this thesis, BNEP can be used to encapsulate Bluetooth packets, making it

possible to create an ad-hoc network that contains devices with both Bluetooth and 802.11x

physical interfaces, which makes it possible to hide both type of interfaces under one virtual

interface.

2.3.5.3 Transparent Heterogeneous Mobile Ad-Hoc Networks

The authors‟ of this work [28] goal was to develop an end-to-end communication abstraction

that supports MAC-switching1, node mobility and multihoming1. Two issues to be solved are

1 Refers to the fact that the used MAC technology may change along a source/destination path.

18 CHAPTER 2. STATE-OF-THE-ART

broadcast emulation and handover. Broadcast emulation because broadcast is not directly

supported in Bluetooth (or on nodes comprising both Bluetooth and 802.11).

Handover is an issue because, in the case of heterogeneous mobile ad-hoc networks, a

handover might include a change in how the medium is accessed. A handover can be caused

by node mobility, a change in user preferences (the user chooses to save energy and use

Bluetooth instead of 802.11), or performance reasons.

The proposed solution is inspired by the Linux Ethernet Bridge [27]. Similar to a physical

bridge device, the Linux Ethernet bridge ties separate layer-two-networks together, only that it is

purely software. It appears to the operating system as a regular layer-two-device one can easily

assign IP addresses to bridges. The bridge is supposed to work in combination with 802.x

devices, therefore not including Bluetooth. Fortunately, the Bluetooth personal area network

(PAN) profile specifies BNEP [26] which itself defines a packet format to transport common

networking protocols over the Bluetooth media. BNEP supports the same networking protocols

that are supported by IEEE 802.3/Ethernet encapsulation, therefore enabling Bluetooth to be

used within the bridge.

The authors define a Virtual Interface (vi) that is responsible for storing a MAC/Interface

mapping, based on incoming packets. Like a Linux ethernet bridge, the vi represents a regular

layer-two-device and can be configured accordingly. The vi allows to plug in any 802.x

compatible network device, like e.g a wireless LAN card or a BNEP/Bluetooth connection, while

hiding the heterogeneity of the used devices from the upper layers. For every neighbouring

node, the vi holds an array of possible outgoing interfaces in a so called neighbouring database.

The author‟s solution is not bound to 802.11x or Bluetooth, but works together with any 802.x-

compatible MAC Layer. The vi in combination with a MANET routing protocol supports

multihoming, dynamic reconfiguration and node mobility.

If the vi receives a packet from the upper layer for delivery, it first checks the packet type. In

case the packet is a broadcast packet, it will be sent through all available interfaces. Therefore,

the vi also acts as a broadcast emulation layer for Bluetooth. However, if the packet is unicast,

the vi looks for the corresponding entry in the neighborhood database mentioned above and

retrieves the information about the interface the packet has to be sent to (entries are periodically

checked for expiration). If there is more than one option, the vi makes use of another feature,

the so called priority table. The priority table specifies a ranking among the interfaces, meaning

that whenever a given neighbour can be reached through several interfaces, the interface with

the lowest priority is taken. This means that the vi also acts as a load-balancing mechanism,

capable of prioritizing interfaces based on different factors (e.g. energy consumption).

1 A node having multiple network interfaces.

19 CHAPTER 2. STATE-OF-THE-ART

The authors also introduce a parameter that is associated with a vi, the so called maxdiff

threshold. The maxdiff threshold unit is 10ms and it decides how much two single entries within

the neighborhood database may differ in terms of timestamps to keep the priority policy up. So a

higher ranked interface entry can be replaced by a lower priority interface if the timestamp

differs for more than maxdiff [28].

The experiments presented demonstrate the feasibility of the abstraction and its potential in

building heterogeneous ad-hoc wireless networks. The measurements show that the system

performs well. There is almost no overhead when using the additional vi on top of a physical

interface. Generally, the vi performs better in combination with AODV than with OLSR. Except

for the case of priority driven handover, the vi also works without a MANET routing module.

However, a routing module increases the performance in terms of packet loss during handover.

In the case of multiple physical interfaces there is a trade-off between agility in terms of vertical

handover and throughput for UDP traffic [28]. The evaluation is clear for the same technology,

but not when relying on different technologies.

Even though this work presents an end-to-end communication abstraction that can be used

in heterogeneous mobile ad-hoc network, it does not make full use of the interfaces presented

in mobile devices. Meaning, this solution does not offer the possibility to use both interfaces

simultaneously, to send different traffic flows of information in order to increase the overall

transmission rate.

2.3.5.4 Linux Ethernet Bridge

The Linux Ethernet Bridge allows putting several real interfaces into a virtual bridging device

[29]. It is not only an in-kernel equivalent to a real Ethernet bridge but together with Netfilter a

very sophisticated tool for packet filtering. Packets are forwarded based on Ethernet address,

rather than IP address (like a router). Since forwarding is done at Layer 2, all protocols can go

transparently through a bridge. The Linux bridge code implements a subset of the ANSI/IEEE

802.1d standard.

Bridging is supported in the 2.4 and 2.6 kernels from all the major distributors. The required

administration utilities are in the bridge-utils [29] package in most distributions.

An Ethernet bridge distributes Ethernet frames coming in on one port to other ports

associated to the bridge interface. Whenever the bridge knows on which port the MAC address

to which the frame is to be delivered is located, it forwards this frame only to this port instead of

polluting all ports together. Ethernet interfaces can be added to an existing bridge interface and

become then (logical) ports of the bridge interface.

20 CHAPTER 2. STATE-OF-THE-ART

 Putting a Netfilter structure on top of a bridge interface renders the bridge capable of

servicing filtering mechanisms. This way, a transparent filtering instance can be created. It even

needs no IP address assigned to work. Of course, an IP address can be assigned to the bridge

interface for maintenance purposes.

 The advantage of this system is evident. Transparency alleviates the network administrator

of the pain of restructuring the network topology.

2.4 Linux Kernel Aspects

To fully understand this thesis and all tools used in its implementation, it is essential to

understand how some Linux networking components work, and how they interact with each

other. In this section, some of these components, such as Netfilter and iptables are presented.

2.4.1 Netfilter

Netfilter [31] consists of a number of hooks at various points inside the Linux protocol stack.

It allows user-defined kernel modules to register callback functions to these hooks. When a

packet traverses a hook, the packet flows through the user defined callback method inside the

kernel module. The Linux kernel contains many so-called Netfilter targets to build powerful

packet filter rule sets. Netfilter can intercept packets at many states of their processing and

perform arbitrary operations on them.

The Netfilter framework has been incorporated into the Linux kernel 2.4 or later versions to

replace the old ipchains architecture [31]. In the new architecture, the iptables command, which

will be shortly described in the next section, is a user-space program that can configure kernel-

space modules such as firewall, network address translation, port-forwarding, and QoS. All

filtering rules, including the proposed improvement, can be added into the kernel-space via the

iptables command.

 The Netfilter framework has five hooking points in the kernel as shown in Figure 2.5:

 NF_IP_PRE_ROUTING,

 NF_IP_LOCAL_IN,

 NF_IP_FORWARD,

 NF_IP_LOCAL_OUT, and

21 CHAPTER 2. STATE-OF-THE-ART

 NF_IP_POST_ROUTING.

NF_IP_PRE_ROUTING and NF_IP_POST_ROUTING are the hooking points for packets

that enter and leave the system, respectively. NF_IP_LOCAL_IN is the hooking point for

packets that are redirected to the user-space local processes after entering the system.

NF_IP_LOCAL_OUT is the hooking point that packets leave the user-space local processes.

NF_IP_FORWARD is the hooking point that packets are forwarded from one network interface

to another.

Packets will pass through hooking points sequentially. On each hooking point, users may

configure some filtering rules via the iptables command. After packets pass through

NF_IP_PRE_ROUTING, the Linux kernel makes the routing decision to decide whether packets

should enter the local processes or be routed to the next hop through another network interface.

Hook functions will return one of five kinds of results when a packet passes through each

hooking point.

The five possible results include:

 NF_DROP: to drop the packet;

 NF_ACCEPT: to accept and forward the packet to the next hooking point or network

interface;

 NF_STOLEN: temporarily to ignore the packet and process the packet later, like

modifying the contents of the packet;

 NF_QUEUE: to store the packet that will be later examined by other user-space

processes, like snort;

 NF_REPEAT: to return the packet to the current hooking point in order to match other

rules.

A basic firewall requires only NF_DROP and NF_ACCEPT states to satisfy users‟ needs.

22 CHAPTER 2. STATE-OF-THE-ART

Figure 2.5: Hooking points in Netfilter.

In the scope of this thesis, Netfilter can be used to intercept the data coming from and to the

application, redirecting it to the virtual interface, which will then decide what to do with that

information.

2.4.2 Iptables

“iptables” is a user-space program for users to configure filtering rules or network address

translation rules into Linux Netfilter kernel modules. There are three kinds of tables that iptables

can configure. They are filter, nat, and mangle tables. Each table is associated with one of the

major functions of Netfilter [35]. Users can configure iptables rules based on the three

tables/functions. Because iptables rules set in each table may be activated in different hook

points, rules of the same table may then be partitioned into different chains each of which

corresponds to a hook point. Table 2.1 shows the relationship between tables and chains.

Table Chain

Filter

INPUT
FORWARD
OUTPUT

Nat

PREROUTING
OUTPUT

POSTROUTING

Mangle

PREROUTING
INPUT

FORWARD
OUTPUT

POSTROUTING

Table 2.1: Chains used in each table.

23 CHAPTER 2. STATE-OF-THE-ART

Table 2.2 shows an example of an iptables rule. The “-t” option describes which table the rule

should be set into. The “-A” option describes which chain the rule should be added in. This

option also indicates the corresponding hook point on which the rule may be applied. The “-p”

option indicates which type of data we are referring to. The “-i" option describes which physical

interface the rule is being applied to. The “--dport" describes the port, in this case it is the port

assigned to the ssh protocol, which by default is port 22. The last “-j ACCEPT” indicates that the

packet should be accepted when matching the rule.

iptables –t mangle -A INPUT -p tcp -i eth0 --dport ssh -j ACCEPT

Table 2.2: iptables rule example.

A more complete and advanced look into the kernel world as well as introduction to a few of

the basic concepts of Linux kernel programming is given in Annex III of this thesis.

2.5 Discussion

As seen in the above sections there is some research done regarding mobility management

and multihoming; however, there is not an adequate solution, that makes full and simultaneous

usage of all interfaces present in a mobile device, not only in terms of adequate load-balancing,

but also in considering the physical aspects of the various interfaces/channels to send different

traffic flows of information to one or more networks.

The paper presented by the authors of the Transparent Heterogeneous Mobile Ad-Hoc

Networks (Section 2.3.5.3) is the closest work we found to our proposed solution. We

implemented a similar solution, using a virtual interface to hide the heterogeneity of the used

devices from the upper layers, improve the way the priorities table is set and add the possibility

to use several different flavors of Wi-Fi interfaces, in order to increment the total throughput, via

an aggregation method similar to the one presented by the author of the paper On Effectively

Exploiting Multiple Wireless Interfaces in Mobile Hosts (Section 2.3.3).

 Also, it is relevant to highlight that in all the surveyed work, the authors only tested their

solutions performance in terms of throughput and did not assess the energy being consumed.

Together with our load-balancing mechanism we have also implemented a power consumption

algorithm that measures the amount the energy that is being consumed, and determines which

network interfaces should be used to save the most amount of energy, when the device is

running on low battery levels.

24 CHAPTER 3. OUR PROPOSED ARCHITECTURE

3 Our Proposed Architecture

Nowadays, mobile devices are equipped with several physical interfaces, together with some

multihoming techniques and load-balancing mechanisms, allowing them to change the interface

being used according to its availability. As explained in the previous section, there is no solution

available that provides the user equipment both with the capability to perform multihoming and

with the capability to use all available interfaces simultaneously to send different traffic flows in a

balanced and transparent way.

We implemented a virtual interface that is able to perform load-balancing and also analyze

each equipment requirements using a priority and a neighboring database table. This virtual

interface (vi) besides hiding the heterogeneity from the application, aggregates the physical

interfaces under it in a transparent way, decides which interfaces should be used and if needed,

will perform the handover in case an interface is no longer available. The architecture of the

implemented vi will be explained in more detail during the next sections.

Although we are interested in a generic solution, we take a network that combines different

flavors of 802.11 as a basis for this thesis, in particular to assist realistic experimentation.

This section starts by providing an informal description of the environment being targeted.

Then, a more detailed model for this environment will be presented, capturing the assumptions

made about the network architecture limitations. Finally, the implemented architecture and

approach to take, that transparently improves the cost-effective connectivity in heterogeneous

access networks, will be provided.

3.1 Architecture Model

In terms of architecture, it is divided into 4 main blocks:

 Virtual Interface;

 Priority Table;

 Decider / Virtual Bandwidth Aggregation (VBA);

 RTT Estimator.

These blocks will work together under a single kernel module to insure the correct

distribution of data trough the several existing physical interfaces [33]. Figure 3.1 describes the

path that the data coming from a certain application takes, until it reaches the physical

interfaces, passing through our virtual interface.

25 CHAPTER 3. OUR PROPOSED ARCHITECTURE

Figure 3.1: Interaction between the implemented mechanisms.

The data coming from and to the application is intercepted by the virtual interface, which will

check three parameters: the priority, availability and RTT of each interface. Then the Virtual

Bandwidth Aggregation block (VBA) (cf. section 3.1.1) will decide how to distribute the

intercepted data between the available physical interfaces (cf. Figure 3.1).

The VBA and RTT Estimator were created from scratch in order to choose which mechanism

to use based on the available interfaces, the other two blocks were modified and updated in

order to properly function with the most recent kernel versions and to correct some problems

related with the significant overhead that was being added by the hooks placed by the previous

authors [28][32].

3.1.1 Virtual Interface

Figure 3.2 illustrates the architecture of the virtual interface (vi) and how it is embedded

within the network stack. We have the vi hiding the heterogeneity from the application,

connected to several physical interfaces. As seen in the figure, the vi will also communicate

with the virtual bandwidth aggregation block (VBA) which is described afterwards.

Virtual
Interface

Applications

…

wlan0

wlan1

wlanx

Mobile
Device

Network

Virtual
Bandwidth

Aggregation
(VBA)

26 CHAPTER 3. OUR PROPOSED ARCHITECTURE

Figure 3.2: Virtual interface architecture approach.

The virtual interface is similar to the Linux Ethernet Bridge [33]. The vi represents a regular

layer-two-device and can be configured accordingly and supports any 802.x compatible network

device, such as a wireless LAN card or a BNEP/Bluetooth connection, while hiding the

heterogeneity of the used devices from the upper layers.

The vi also holds an array of possible outgoing interfaces in a neighboring database (NDB),

similar to the Linux bridge‟s forwarding database. An entry contains a timestamp and is created

upon receiving the first packet (i.e. a routing broadcast message or a route reply) of the

associated neighbor/interface pair. Every consecutive incoming packet refreshes the timestamp.

With this information the vi has a view of all neighbor nodes and the interfaces that are available

to be used.

The vi collects information from the priority table to understand select a set of interfaces for

communication, according to each device‟s needs. It is responsible for deciding on handovers

and to perform them, switching the traffic from one interface to another using a simple timer.

3.1.2 Virtual Bandwidth Aggregation (VBA) / Decider

The VBA/decider, presented in Figure 3.2, has information concerning the interfaces that can

be used from the vi, and according to that information, it chooses how the data to be sent, is

divided between those interfaces. This is the mechanism that will increase the total throughput

of the device, in comparison with a standard solution, since we are dynamically allocating the

data we want to send between the existing interfaces.

Application

Transport

IP

MAC

Routing
protocol

Broadcast Unicast

Timer Priorities NDB

802.1x Interface
Virtual Interface

VBA
RTT
Est.

27 CHAPTER 3. OUR PROPOSED ARCHITECTURE

Based in the number of physical interfaces present in a mobile device, their priority and RTT,

the VBA/decider, decides what to do, in this case which interfaces should be used. Also the

VBA is also able to monitor the mobile devices power levels and if necessary active a power

saving mode that will use the interfaces with the lowest energy consumption to send the data.

The implementation details, and how the decision is taken by the VBA, are explained

afterwards, in section 3.2.

3.1.3 Priority Table

The priority table specifies a ranking among the interfaces, meaning that whenever a given

neighbor can be reached through several interfaces, the interface with the highest priority is

taken, being 0 de highest.

The default priority is also 0, which means if the user wants a specific interface to be used,

he has to manually define the priority of each interface. If there are interfaces with the same

highest priority, all of those can be used simultaneously, since no limitations were set by the

user (e.g. no preference between Wi-Fi over Bluetooth).

The information gathered by this table is used by the vi to choose which interfaces should be

used, as shown in Figure 3.3. In this example there are 3 nodes (A, B and C), node A has 2

interfaces (Bluetooth and Wi-Fi), node B has also 2 interfaces (Bluetooth and Wi-Fi) and node C

has only a Bluetooth interface. Each node has a defined priority to each interface and an entry

in the Neighboring Database (NDB) for each existing neighboring node. In this example, the

node A, has the same priority for each interface, which means, if both are available, they can be

used simultaneously.

Figure 3.3: The neighboring database (NDB), and the priorities corresponding to each node.

A

C

B Priorities ndb

A Bnep0– 1
Eth1 – 1

B – eth1, bnep0
C – bnep0

B Bnep0– 1
Eth1 – 2

A – eth1, bnep0
C – bnep0

C Bnep0– 1 A – bnep0
B – bnep0

28 CHAPTER 3. OUR PROPOSED ARCHITECTURE

3.1.4 RTT Estimator

This block is responsible for estimating the average RTT for each physical network interface,

which will then relay it to the VBA so it can decide which interfaces to use. We use the

information present in the ACK packages reaching the device to estimate the RTT. This

information is also used by TCP to calculate the Retransmission Timeout (RTO), this means,

the amount of time the sender will wait for a given packet to be acknowledged. The estimate is

based on the traffic leaving the device, and it is done so we can have a clear image of the

neighboring nodes, and if a certain path used by a physical network interface is congested or

not. This estimate is made periodically and the values stored in a hash table, so that the VBA

can easily access this information.

3.1.5 Data Flow - Main Blocks

In this section, before describing the implementation details, we explain the connections,

inputs and outputs within the main blocks composing the vi module.

As seen in Figure 3.4 the Virtual Interface receives information from the application layer and

also from the VBA, which is responsible for deciding which network interfaces should be used.

The VBA gathers information from three blocks, the priority table, the neighboring database

(NBD) and the RTT Estimator. With this information it will decide which interfaces are to be

used.

The interactions within the blocks are described next, according with the numeration present

in Figure 3.4 and assuming packets being sent.

1. Data coming from the application layer to the physical network interfaces is intercepted

and temporarily stored by the virtual interface.

2. The VBA receives a request from the virtual interface to choose the physical network

interfaces to be used in distributing the data intercepted by the virtual interface.

3. VBA receives the list of available interfaces and associated neighbors from the

neighboring database (NDB). These neighbors entries are refreshed via the routing

algorithm control messages which are periodically broadcasted by neighborhood nodes.

4. VBA receives the priority associated to each physical network interface from the priority

table.

5. VBA retrieves the RTT estimation from the RTT Estimator for each available interface

with the highest priority.

29 CHAPTER 3. OUR PROPOSED ARCHITECTURE

6. VBA decides which physical network interfaces should be used and relays this

information to the virtual interface.

7. The virtual interface divides the data stored in a temporary buffer and distributes it

between the physical network interfaces defined by the VBA.

Figure 3.4: Data flow, explaining the interactions between the main blocks present in the vi module.

3.2 Implementation Aspects

The previous chapters described the thesis main building blocks, explaining the choices that

were made in terms of tools to rely upon. This section is dedicated to the contributions of the

thesis both in terms of concepts, implementation, and analysis. The section goes over specific

Applications

Virtual
Interface

Physical Network Interfaces

Network

Mobile
Device

Priority
Table

VBA/Decider

NDB
RTT

Estimator

1

2

3

4

5

6

7

30 CHAPTER 3. OUR PROPOSED ARCHITECTURE

changes to parameter tuning, installation options and configurations, attempting to explain how

each block introduced in section 3.1 was implemented.

The virtual network interface for transparent heterogeneous mobile ad-hoc networks in terms

of implementation consists of three parts and can be seen in figure 3.5:

1. A kernel module providing the actual network interface;

2. A library providing programmatic access to the configurable options;

3. A user space utility to manage virtual interfaces.

Figure 3.5: The Virtual Interface Architecture.

The kernel module contains all of the blocks introduced in the previous sections. The library

and user space gives the user the possibility to configure each virtual interface parameter and

properties according to their specific needs. This configuration, specific to the virtual interface is

only available through SysFS (cf. Annex III). The data is intercepted and redirected via Netfilter

hooks, which will be presented in the following sections.

Linux TCP/IP
Stack

Virtual
Interface
Module

(vi)

Application

Virtual Interface Userspace Agent

Kernel-space

User-space

Network

Netfilter
Hooks

SysFSSysFS

Driver
Device

Port

Netlink
Socket

31 CHAPTER 3. OUR PROPOSED ARCHITECTURE

3.2.1 The Kernel Module

The original work [28][32] followed an approach based on the bridge code [29], while this

work, albeit taking a lot of inspiration out of it, started almost from scratch, since the previous

version [32] had extensive limitations. The requirements for the module were as follows.

 Provide the functionality of the original virtual interface, namely:

o Attach network devices.

o Maintain a neighbor database.

o Provide a mechanism capable of performing handover.

o Provide a broadcast emulation.

o Configuration via SysFS.

 No use of custom ioctls.

 Possibility to use several physical interfaces simultaneously.

 Intercept the data using Netfilter hooks.

 Dynamically balance the data between the available physical priorities.

 Implementation should be as simple as possible.

 Minimize overhead and handover time.

 Ability to detect low battery levels and save energy by choosing which network devices

to use.

In terms of implementation, we first needed to rewrite the previous implementation of the

virtual interface code [28][32], since it was limited to a very specific version of the Linux kernel,

and only worked with sysfsutils v1.x [34]. In version 2.x sysfsutils suffered a number of changes

to the way attributes were populated, another significant change was the removal of struct

sysfs_directory, which rendered the previous module implementation non operational.

The second step was to improve the method used to intercept the data, since the previous

one was too evasive [32]. The hook was placed in the general packet reception routine of a

network device. Before passing the sk_buff to the upper layers it was checked if it has to be

passed to a virtual interface. This previous solution added so much overhead to the vi, that the

total throughput was significantly affected.

The solution we found was to insert Netlfilter hooks, introduced in the previous section (cf.

section 2.4.1), removing the need to recompile the Kernel with the patch inserted into the dev.c

file, substantially reducing the overhead added, as we will be seeing in Section 4.

The next step was to add a new block to the virtual interface, named Decider / Virtual

Bandwidth Aggregation (VBA). This block is responsible for choosing which physical interfaces

32 CHAPTER 3. OUR PROPOSED ARCHITECTURE

to use from the ones behind the virtual interface. The VBA makes this decision based on three

parameters, the priority and RTT of each interface and their availability according to the

neighboring database, which contains the available neighbors and the path used to reach them.

Based on these three parameters, the VBA chooses how the data stored in the

dev_queue_xmit buffer will be redirected to the available interfaces. For this purpose the

physical interfaces are transparently aggregated under the virtual interface and a load balancing

mechanism was implemented to distribute the data between the available interfaces. To do this

we calculate the RTT of each interface, and use a simple function to calculate a value in the

form of percentage, for each interface. This value defines the percentage of data intercepted by

the vi a physical interface is responsible for. By doing this we are dynamically balancing the

traffic between our physical interfaces, taking in consideration not only their RTT but also the

paths actually being used.

The way we aggregate the interfaces under the virtual interface is the same used by the one

implemented by the Linux bridge [29], where there is an aggregation of several interfaces, and

the traffic is redirected between them. What was done was an adaptation of the mechanism

used by Linux Bridge to our virtual interface (cf. section 3.2.1.4), so that it would also work in an

ad-hoc network environment.

Additionally, the VBA is also able to monitor the device‟s power levels (the amount of battery

left and if the device is plugged in to any power adapter), and if needed it will reduce the energy

consumption by dynamically choosing the interfaces, based on their power consumption and

throughput, making certain that the device uses the minimum amount of power to send the data.

This extra function was also created from scratch, allowing the virtual interface to balance the

data in a different way according to the power level, in order to save some energy.

The detailed implementation of each block will be presented in the next sections. A complete

tutorial in how to install and use the virtual interface is also available in the annex section of this

document (cf. Annex IV).

3.2.1.1 User interface

The network interface exposes its functionality to the network subsystem via well-defined

interfaces. The configuration specific to the virtual interface is only available through SysFS.

The following shows which operations the user is able to perform using the files in SysFS. The

files may be manipulated using cat and echo.

 Driver – /sys/bus/platform/driver/vi/

Show version: version

33 CHAPTER 3. OUR PROPOSED ARCHITECTURE

Create a virtual interface: add

Remove a virtual interface: remove

 Device – /sys/class/net/vi<x>/vi/

Attach physical network interface: add

Detach physical network interface: remove

Manipulate maxdiff value: Maxdiff

 Port – /sys/class/net/vi<x>/vi/ports/eth<y>/viport/ & sys/class/net/eth<y>/viport/

Manipulate priority: priority

As we can, it is possible to create and remove any number of virtual interfaces, even though

their names must start with “vi”, so it is possible to differentiate them from the remaining

interfaces. We can add and remove the physical interfaces from a certain virtual interface and

set their priorities, which will define the physical interfaces that are to be used.

In this section a new parameter that is associated with the vi, is also introduced, the so

called maxdiff threshold. The maxdiff threshold unit is given by formula 3.1 and it decides how

much two single entries within the neighborhood database may differ in terms of timestamps to

keep the priority policy up. So a higher ranked interface entry is replaced by a lower priority

interface if the timestamp differs for more than maxdiff. The 10ms default value has been

considered due to the guidelines of the previous version [28], where the authors reached the

conclusion that this was the value the vi would perform better with, in terms of throughput and

handover time.

 (3.1)

The other parameters were added to ensure the maxdiff value could vary according with

each machine‟s system timer frequency, which is represented in the equation by Hz, and by

default is 1000 Hz [33].

3.2.1.2 Registering with the Device Model

The driver registers with the platform bus as there is no real bus it belongs to. The driver‟s

registration is necessary because there needs to be an interface to the driver in order to

instantiate a virtual interface. This registration is made using the SysFs, described in Annex III; it

contains device directories with links to the interface‟s drivers.

34 CHAPTER 3. OUR PROPOSED ARCHITECTURE

The devices directory contains the global device hierarchy. This contains every physical

device that has been discovered by the bus types registered with the kernel. It represents them

in an ancestrally correct way, each device is shown as a subordinate device of the device that it

is physically (electrically) subordinate to. Via this filesystem the user or system utilities can

access and modify the parameters of devices and drivers, which is particularly useful in this

situation, where we have a virtual interface.

The registration of a new interface is handled by a sysfs handler, using the function

register_netdevice(device), which receives as input the newly created virtual interface. To delete

a virtual interface, we use the function unregister_netdevice(device) also from sysfs.

At initialization time, a device driver allocates a net_device structure and then initializes it

with its necessary routines. One of these routines, called dev->hard_start_xmit, defines how the

upper layer should enqueue an sk_buff for transmission. This routine takes an sk_buff. The

operation of this function is dependent upon the underlying hardware, but commonly the packet

described by the sk_buff is moved to a hardware ring or queue.

3.2.1.3 Data Interception

In order for the virtual interface to be able to receive the data coming to/from the application,

it is necessary to intercept the data, which means we need to place a hook somewhere, to

redirect the data to the virtual interface, and store it in a buffer.

As presented in [32], a hook into dev.c has shown to be very invasive and not at all flexible,

causing a significant increase in the overhead added by the virtual interface. Another drawback

of this solution is that the hook is still active even when the virtual interface is not being used,

since the system is always checking if it should redirect the data to an existing virtual interface.

The most promising method we found to intercept the data, was using a custom Netfilter

target. Such a target can be loaded and unloaded from kernel at any time. A well-understood

architecture in the kernel and a userspace utility makes Netfilter a powerful tool. The Netfilter

target for the virtual interface and other known Netfilter targets can also be combined in any

favored way.

This hook performs exactly how the hook in dev.c does, but does not requires any

modification to the Linux base files, and therefore there is no need to recompile the Kernel, with

the modified version of the dev.c file, and it is only active when we are using the virtual interface

module.

35 CHAPTER 3. OUR PROPOSED ARCHITECTURE

Packets will pass through hooking points sequentially. On each hooking point, it is possible

to configure some filtering rules via the iptables command. After packets pass through

NF_IP_PRE_ROUTING, the Linux kernel makes the routing decision to decide whether packets

should enter the local processes or be routed to the next hop through the virtual interface and

then redirected to a certain physical interface (this is decided by the decider, which will be

described in section 3.2.1.7). In order to implement the Netfilter hooks, some major

modifications were needed.

The Netfilter hook is created by the net_hook function, and registered using

nf_register_hook. By adding the hook, we are intercepting and storing each data flow in a

temporary buffer (dev_queue_xmit), while the virtual interface decides to which interface(s) it

should be redirected to.

3.2.1.4 The Neighbor Database

The neighbor database is a hash table with the hash function calculated on the MAC

address. A linked list for each hash value contains the entries corresponding to neighbors (cf.

Figure 3.6 for a simplified representation of the neighbor database). The structure of a neighbor

entry can be seen in listing 3.1.

01 struct net_vi_ndb_entry

02 {

03 struct hlist_node hlist;

04 atomic_t use_count;

05 struct mac_addr addr;

06 struct net_vi_port *dst;

07 struct rcu_head rcu;

08 unsigned long ts;

09 unsigned is_local:1;

10 };

Listing 3.1: Structure net_vi_ndb_entry.

Figure 3.6: The neighbor database (simplified).

36 CHAPTER 3. OUR PROPOSED ARCHITECTURE

Let us now take a closer look at how routes get established in a heterogeneous mobile ad-

hoc network when using virtual interfaces. In the case of a reactive routing protocol, it is the

application that triggers a path setup. Since there is no route available yet, the routing protocol

typically first broadcasts a route request. At the very beginning the neighboring database

contains no entries but the transmission of a broadcast packet does not need any neighborhood

information anyway. After the route request has passed several hops, a route reply eventually

returns back to the origin. The route reply not only establishes the route but also creates an

entry within the neighboring database, providing the vi with information on the interface to which

the packets to the given neighbor have to be transmitted.

In the case of a pro-active routing protocol, things are slightly different. Here nodes

periodically broadcast their neighboring information and therefore are also creating entries

within neighborhood database. In both cases (proactive and reactive) the NDB entry is

established in combination with the new route, regardless of whether the MAC technology

changes or not.

The fields of this structure are used as follows:

 hlist (The linked list);

 use_count (An atomic reference counter);

 addr (The address of the neighbor. Local devices are neighbors, too);

 dst (The port through which a neighbor is reached);

 rcu (Structure for the RCU-mechanism. This is used for adding and removing entries);

 ts (A timestamp. The difference of such timestamps are compared with the maxdiff

value);

 is_local (As mentioned, local devices are neighbors, too. This field differentiates

between them and real neighbors).

Insertion

The function to insert and update entries into the neighbor database is the same. First, the

hash table is searched for a matching entry. If one is found, it is updated; otherwise a new entry

is created. The update sets the timestamp to the kernel time jiffies1.

1 A jiffy is the duration of one tick of the system timer interrupt. It is not an absolute time interval unit, since its

duration depends on the clock interrupt frequency of the particular hardware platform.

37 CHAPTER 3. OUR PROPOSED ARCHITECTURE

Outgoing link selection

Outgoing links are selected according to the available neighboring nodes, present in the

neighboring database. First we check if there is any available neighbor, if not, then the network

interface cannot be used. After knowing which network interfaces can be used, the VBA decides

which ones to use, based on their priorities and RTT estimation.

This structure is used to store the information of the available neighbors in an ad-hoc

network, particularly the available nodes and which interface should be used to establish a

connection with a certain node. We also added the possibility to use the virtual interface in a

non ad-hoc scenario, which widens the possible scenarios the vi can be used in. This was done

by adding the possibility to dynamically change the MAC of the virtual interface, so the packets

coming from/to the vi would not be discarded, removing the necessity to have the Wi-Fi

interfaces in promiscuous mode, which was a major drawback in the previous versions, since

most of the Wi-Fi drivers does not support it.

3.2.1.5 Processing Incoming Packets

Incoming packets reach the virtual interface through the Netfilter hook. First, the sender‟s

entry in the neighbor database is updated or created, and then the packet is passed up if:

 The virtual interface is in promiscuous mode.

 The packet was sent to the broadcast address.

 The destination address is the local address.

 The destination address belongs to one of the ports.

Listing 3.2 shows the several checking conditions in a simplified manner, used to verify if the

packets are to be passed up. If all of them fail, then the packets are dropped.

Receiving a packet is performed with netif_rx. When a lower-level device driver receives a

packet (contained within an allocated sk_buff), the sk_buff is passed up to the network layer

through a call to netif_rx. This function then queues the sk_buff to an upper-layer protocol's

queue for further processing through netif_rx_schedule. Both dev_queue_xmit and netif_rx

functions can be found in linux/net/core/dev.c.

01 /*

02 * pass up all frames if virtual interface in promiscuous mode

03 */

04 if(vi->dev->flags & IFF_PROMISC) {…

05 vi_pass_frame_up(vi, skb)

06 …}

07

08

38 CHAPTER 3. OUR PROPOSED ARCHITECTURE

09 /*

10 * pass up broadcast frame

11 */

12 if(dest[0] & 1){…

13 vi_pass_frame_up(vi, skb)

14 …}

15

16

17 /*

18 * pass up local frame

19 */

20 if (mac_match(dest, vi->dev->dev_addr)) {…

21 vi_pass_frame_up(vi, skb)

22 …}

23

24

25 /*

26 * pass up frames sent to one of the added interfaces (ports)

27 */

28 dst = __vi_ndb_get(vi, dest);

29 if (dst != NULL && dst->is_local) {…

30 vi_pass_frame_up(vi, skb)

31 …}

Listing 3.2: Handling incoming frames (simplified).

3.2.1.6 Processing Outgoing Packets

Outgoing packets reach the virtual interface through the hard_start_xmit hook of the network

device default interface. A packet is sent according to the following policy:

 Broadcast packet

o Transmit over all attached interfaces;

 Normal packet;

o Neighbor known: transmit over the corresponding outgoing link;

o Neighbor unknown: transmit over all attached interfaces;

As we can see in Listing 3.3, there are two types of packets, broadcast and normal.

Broadcasting is more frequent in ad-hoc networks than in wired networks, especially as the

basic vehicle for on-demand route discovery. So, if the type is broadcast or we cannot find a

certain neighbor in the neighboring database, the packet is transmitted over all attached

interfaces. If not, then it is transmitted to a known neighbor over a certain outgoing link, present

in the neighboring database, according with the policies set by the decider, which is described

in the next section (cf. section 3.2.1.7).

To send a sk_buff from the protocol layer to a device, the dev_queue_xmit function is used.

This function enqueues a sk_buff for eventual transmission by the underlying device driver (with

the network device being defined by the net_device or sk_buff->dev reference in the sk_buff).

39 CHAPTER 3. OUR PROPOSED ARCHITECTURE

The dev structure contains a method, called hard_start_xmit, that holds the driver function for

initiating transmission of a sk_buff.

This is a large structure containing all the control information required for the packet. Struct

sk_buff has fields to point to the specific network layer headers:

 transport_header (previously called h) – for layer 4, the transport layer (can include

TCP, UDP or ICMP header, and more);

 network_header – (previously called nh) for layer 3, the network layer (can include IP,

IPv6 or ARP header);

 mac_header – (previously called mac) for layer 2, the link layer.

 skb_network_header(skb), skb_transport_header(skb) and skb_mac_header(skb)

return pointer to the header.

01 /*

02 broadcast packet

03 */

04 static void vi_flood_deliver(struct net_vi *vi, struct sk_buff *skb)

05 {...}

06

07

08 /*

09 transmit packet. Net_device default interface

10 */

11 int vi_dev_xmit(struct sk_buff *skb, struct net_device *dev)

12 {...}

Listing 3.3: Handling outgoing frames (simplified).

3.2.1.7 Decider / Virtual Bandwidth Aggregation (VBA)

The VBA is responsible for choosing how the data, we want to send, is divided between the

available interfaces. This is the mechanism, within our solution, that was created from scratch

and shall increase the total throughput, in comparison with a basic setup, without the virtual

interface, since we are transparently aggregating the available interfaces under the vi and

dynamically allocating the data we want to send between the existing interfaces.

As mentioned before, there are several steps the vi must complete before choosing how to

divide the data between the physical interfaces. First it is necessary to check three parameters:

 Priority;

 Availability;

 Round Trip Time (RTT).

40 CHAPTER 3. OUR PROPOSED ARCHITECTURE

Priority

To store the priority of each physical interface, we created a simple hash table that stores

the names of each physical interface within a certain virtual interface, and their corresponding

priorities. The access to the priority table is done in order do find all the physical interfaces with

the highest priority, being 0 the highest (0 is also the default value for any physical interface that

is added to a virtual interface). This is done using a simple function that accesses the priority

table, and returns a list with all the highest “rated” interfaces. With this information we know

which interfaces the user wants to prioritize.

Availability

The availability of each interface can be verified by using the information stored in the

neighboring database, introduced in the previous section. In this hash table we have all the

neighbor nodes, and which interfaces can be used to reach them. Since this table is constantly

being updated by the routing protocol, we can use this information to check if the interfaces do

in fact have any available path to the destination address.

This metric is verified so that one interface is not used when there are no available neighbors

for it to transfer the data. In listing 3.4, we present a simplified version of the function used to

check the neighboring database for a positive match. If a valid path is found for a specific

physical interface it returns “0”, if there is not any, the function returns “-1”.

01 int vi_ndb_find(const struct net_vi *vi,const struct net_vi_port * port)

02 {

03 int I;

04 struct net_vi_ndb_entry *ndb;

05 struct hlist_node *h;

06 //rcu_read_lock();

07 for(I = 0; I < VI_HASH_SIZE; i++)

08 {

09 hlist_for_each_entry_rcu(ndb, h, &vi->hash[i], hlist)

10 {

11

12 if (ndb->dst == port)

13 {

14 //rcu_read_unlock();

15 return 0;

16 }

17

18 }

19 }

20 //rcu_read_unlock();

21 return -1;

22

23

24 }

Listing 3.4: Availability of an interface.

41 CHAPTER 3. OUR PROPOSED ARCHITECTURE

TCP Round-Trip Time (RTT) estimation

After knowing which interfaces to use and their availability, it is necessary to calculate the

Round-Trip Time (RTT) of each physical interface.

For this purpose and since TCP continuously estimates the current RTT of every active

connection in order to find a suitable value for the retransmission time-out, we implemented a

mechanism capable of calculating the RTT using TCP‟s periodic timer. Each time the periodic

timer fires, it increments a counter for each connection that has unacknowledged data in the

network.

Figure 3.7: TCP/IP input processing.

For every data stream sent using TCP there is an acknowledge response that reaches the

mobile device, these packets are intercepted by the Virtual Interface, which will then extract the

RTT estimation. Figure 3.7 shows how packets enter the network device, pass through the

TCP/IP stack, are intercepted by the Virtual Interface Module and then are delivered to the

actual applications. In this example there are five active connections, three that are handled by

a web server application, one that is handled by the e-mail sender application and one that is

handled by a data logger application.

TCP implementations attempt to predict future round-trip times by sampling the behavior of

packets sent over a connection and averaging those samples into a Smooth Round-Trip Time

estimate (SRTT). When a packet is sent over a TCP connection, the sender times how long it

takes for it to be acknowledged, producing a sequence of round-trip samples: S(1), S(2), S(3),

…

With each new sample Si, the new SRTT is computed as [36][37]:

 (3.2)

Network
Interface

Virtual
Interface
Module

TCP/IP Stack

Web server application

Web server application

Web server application

Mail sender application

Data logger application

Incoming
Packets

Application
Data

42 CHAPTER 3. OUR PROPOSED ARCHITECTURE

Where SRTT(i) is the current estimate of the round-trip time, SRTT(i+1) is the new computed

value, and α is a constant between 0 and 1 that control how rapidly the SRTT adapts to

changes (usually α=1/8).

By applying formula 3.2 with the information extracted from the ACK packets constantly

arriving, we are capable of estimating the average RTT values for each physical interface,

without producing additional data [33]. This estimation is solely based on packets being

transmitted by the applications located behind the virtual interface.

Additionally, the information regarding each interface‟s RTT is stored persistently in the

format of a hash table, so that the VBA can easily access this information, and use it in function

3.3 to calculate the percentage assigned for each interface, which indicates how much data,

within each traffic flow, the interface is responsible for.

Data division

The RTT estimation is only made from time to time (approximately each 5 seconds), but the

function 3.3 which was created to balance the data in a proportionate way through the several

physical interfaces, is executed for each data flow that is intercepted by the virtual interface.

 (3.3)

The PIa is the percentage a certain interface should be used to transfer the data intercepted

by the vi and its value is between [0, 1]. The sum of all PI‟s must be one and it is calculated for

every single available interface with the highest priority. The RTT is the Round-Trip Time of a

certain interface and the summation interval is between 1 and n, being n the total number of

available physical interfaces with the highest priority.

When a virtual interface is first created, and several interfaces are added, the table

containing the results from formula 3.3 is empty. For this matter we use function 3.4, which uses

the bandwidth from each interface, as a metric, to calculate the necessary proportions that will

be used to calculate the amount of data each physical interface is responsible for, within a

certain data flow.

43 CHAPTER 3. OUR PROPOSED ARCHITECTURE

Note that this is only temporarily; function 3.4 is only applied if the RTT metric fails. Meaning

there is not enough available information regarding the RTT estimation of every physical

interface.

 (3.4)

Again, the PIa is the percentage a certain interface should be used to transfer the data

intercepted by the vi and its value is between [0, 1]. The sum of all PI‟s must be one and it is

calculated for every single available interface. The Bandwidth values are acquired via SysFS

and the summation interval is between 1 and n, being n the total number of available physical

interfaces. The values acquired by this function, are only used if there is at least one or more

interfaces whose RTT values were not calculated yet, since the bandwidth used for this

calculation is not the actual throughput (does not take into consideration, the path being used by

the physical interfaces).

Load Balancing

After calculating all the PI‟s, the VBA will now redirect the data to the physical interfaces,

taking into consideration the obtained values.

Note that each interface has an assigned percentage, and the sum of the percentages of all

available interfaces is 100%. So if for example we have 10Mb to transfer and 2 available

interfaces (eth0 and eth01), eth0 has a percentage of 20% (PI = 0,2) and eth1 has 80% (PI =

0,8), this means that eth0 will transfer approximately 2Mb while eth1 transfers 8Mb.

In comparison with the previous versions [28][32], where the authors only used priorities to

divide the data between the physical interfaces, we are now using a dynamic load balancing

mechanism since we are dynamically allocating the data through the existing interfaces. By

implementing such mechanism we are also making sure that no bottlenecks are being created,

since by taking into consideration the actual RTT value for each interface, we are not only

analyzing each interface‟s throughput but also the path actually being used by all available

interfaces with the highest priority.

To better explain all the methods VBA has to offer and how it distributes the data between

the available physical interfaces, simplifying the whole implementation description, we can

divide the available options into two modes of operation:

44 CHAPTER 3. OUR PROPOSED ARCHITECTURE

 Mode I – 1 Physical Interface

There is only one interface with the highest priority, being 0 the highest. Only one interface

is used at a certain time to send the data. If that interface goes down, then the VBA uses

the interface with the second highest priority. If by any case the VBA cannot find any

available path, in the neighboring database, then the virtual interface will transmit the data

coming from the application via broadcast mode, through all the interfaces present in the

device, to assure that it will reach its final destination;

 Mode II – 2 or more Physical Interfaces

If there are several interfaces with the highest priority, all those interfaces are used, and a

load balancing mechanism is applied to distribute the data trough all the available

interfaces. If all interfaces go down, except one, then the VBA goes into Mode I. The load

balancing mechanism, divides the intercepted data, stored in the buffer, between all the

available interfaces. This mechanism is only applied to interfaces with the same priority,

and the amount of data an interface is responsible for sending is calculated using either

formula 3.3 or formula 3.4, depending if the table containing the RTT values is empty or

not.

Energy Consumption

The VBA is also responsible for monitoring the energy power levels, foreseeing the necessity

of saving energy, by using the best suited interfaces. We do this by accessing the files present

in the /proc/acpi/battery directory, which stores information regarding the actual battery status of

the device. We extract the power level and information that tell us if the device is connected or

not to any power adapter. This information can also be accessed parsing the information

returned by the command acpi –a.

If the battery level is below 10% and if the mobile device is not plugged in to any power

adapter then the power saving mode is activated. This mechanism is described in the next

section.

3.2.2 Power Saving Mode

This mode as mentioned before is only activated if the battery level is below 10% and if the

mobile device is not plugged in to any power adapter. The VBA is responsible for monitoring

both values, and will activate this mode to insure, that the data will be transferred while

45 CHAPTER 3. OUR PROPOSED ARCHITECTURE

consuming the minimum amount of power possible. This verification is made by de VBA every

120 seconds.

The function used to distribute the data between the physical interfaces is similar to the one

presented in the previous section (formula 3.3). It takes into consideration the RTT values, in

order to extrapolate the throughput and the energy consumption of each interface. Based on

these two parameters we find the solution that consumes the least amount of energy to send

the data.

For example, if we have one interface with a lower energy consumption than the remaining,

that does not mean it will consume less energy to send a certain data flow. We have to take in

consideration its throughput, verify how long it will take to transfer the data and during that time,

how much energy those interfaces will consume.

Throughput

The Throughput is measured in bits per second, it is estimated based on the RTT

measurements and it is calculated using formula 3.5. Note that by default the TCP Buffer size

>= TCP Window size. Typical TCP window size is equal to 64 Kbyte, and the RTT is measured

in seconds [38].

The value we obtain in formula 3.5 is a theoretical value of the throughput. It is calculated in

order to estimate the energy consumption of a certain interface and is used in formula 3.6. To

simplify the calculation we are assuming a packet loss of 0%, since the obtained values are

merely for comparison reasons, so we can understand which interfaces use the most amount of

energy to send a certain data flow.

 (3.5)

Energy Consumption per packet

When a node sends or receives a packet, the associated network interface, decrements the

available energy according to the following parameters: (a) the specific network interface

controller (NIC) characteristics, (b) the size of the packets and (c) the bandwidth used. The

following formula represents the energy used (in Joules) when a packet is transmitted or

received (Formula 3.6) and the packet size is represented in bits [38]:

46 CHAPTER 3. OUR PROPOSED ARCHITECTURE

 (3.6)

The energy consumption is measured in miliamperes (mA), varies with the interface being

used and if a packet is being transmitted or received. The energy supply also varies with the

device being used and is measured in Volts (V).

Although the equipment consumes energy, not only when sending and receiving but also

when listening, we have assumed in our model that the listen operation is energy free, since all

the evaluated ad-hoc routing protocols will have similar energy consumption due to the node

idle time.

Energy Consumption per data flow

After knowing how much energy a network interface requires for sending a packet, we can

now calculate if the current set up, defined by the VBA is consuming the least amount of energy

to send a certain data flow. For that we use formula 3.7, representing the energy consumed

during the transmission of the data present in the output buffer (in Joules). The BufferSize and

PacketSize are both represented in bits and the summation interval is between 1 and n, being n

the total number of available physical interfaces with the highest priority. The PI represents the

value calculated in either formula 3.3 or formula 3.4 and Energy represents the energy used (in

Joules) when a packet is transmitted, and it is calculated in formula 3.7 [38].

 (3.7)

Now we need to compare the acquired energy consumed value with the energy the interface

with the lowest energy consumption would require for sending the same amount of data. For

that we use formula 3.8. The parameters are the same as the ones in formula 3.7, but now we

are only taking in consideration one interface, not all the interfaces present in the mobile device.

 (3.8)

After acquiring this second value we compare both energy results, and verify if

EnergyConsumedVBA ≥ EnergyConsumedI. If this is the case, then the VBA will only use the

interface with the lowest energy consumption to transmit the data flow, since it will consume

less energy.

47 CHAPTER 3. OUR PROPOSED ARCHITECTURE

3.2.3 The libvi library

This library provides the interface given in listing 3.5. The library uses libsysfs [42] to access

the virtual files in the SysFS to configure the virtual interface. Before actually using the functions

provided by libvi it has to be initialized by calling vi_init. This is one of the two possible ways to

configure the virtual interface; the second one is presented in the next section.

01 int vi_init(void)

02 {

03 vi_class_net = sysfs_open_class("net");

04 return 0;

05 }

06

07 int vi_addvi(const char *name);

08

09 int vi_delvi(const char *name);

10

11 int vi_addif(const char *vi, const char *ifname);

12

13 int vi_delif(const char *vi, const char *ifname);

14

15 int vi_set_portpriority(const char *ifname, unsigned long prio);

16

17 int vi_set_maxdiff(const char *vi, unsigned long maxdiff);

18

19 int vi_get_portpriority(const char *ifname, unsigned long *prio);

20

21 int vi_get_maxdiff(const char *vi, unsigned long *maxdiff);

Listing 3.5: Virtual interface configuration library.

3.2.4 The victl command

The victl command is a command-line utility which uses libvi to manage virtual interfaces. If

victl is run without parameters it displays a help message which explains how to use it. Listing

3.6 shows the available commands showed upon running the command victl without

parameters:

 addvi - Create a virtual interface;

 delvi - Remove a virtual interface;

 addif - Attach physical network interface to an existing virtual interface;

 delif - Detach physical network interface from an existing virtual interface;

 setmaxdiff - Manipulate maxdiff value;

 setportprio - Manipulate priority from a certain physical interface.

48 CHAPTER 3. OUR PROPOSED ARCHITECTURE

[root@mota]# victl

commands:

help command list

addvi <vi> add vi

delvi <vi> delete vi

addif <vi> <device> add interface to the vi

delif <vi> <device> del interface from the vi

setmaxdiff <vi> <maxdiff> set maxdiff

setportprio <vi> <port> <prio> set port priority

[root@mota]# victl add vi0

[root@mota]# victl addif vi0 wlan0

[root@mota]# victl setprio vi0 wlan0 1

[root@mota]# victl addif wlan1

[root@mota]# victl setprio vi0 wlan1 1

[root@mota]# ifconfig wlan0 0.0.0.0

[root@mota]# ifconfig wlan1 192.168.2.1

[root@mota]# victl setdiff 200

[root@mota]# ifconfig

wlan0 Link encap:Ethernet HWaddr 00:02:72:B2:78:D2

UP BROADCAST RUNNING MULTICAST MTU:1500

RX packets:0 errors:0 dropped:0 overruns:0

TX packets:4 errors:0 dropped:0 overruns:0

collision:0 txqueuelen:100

RX bytes:104 (104.0 b) TX bytes:88 (88.0 b)

wlan1 Link encap:Ethernet HWaddr 00:02:2D:7B:88:D1

UP BROADCAST RUNNING MULTICAST MTU:1500

RX packets:1093 errors:277 dropped:0 overruns:0

TX packets:51 errors:0 dropped:0 overruns:0

collision:0 txqueuelen:100

RX bytes:65778 {64.2 Kb} TX bytes:11386

Interrupt:11 Base address:0x100

vi0 Link encap:Ethernet HWaddr 00:02:72:B2:78:DC

inet addr:192.168.2.1 Bcast:192.168.2.255

UP BROADCAST RUNNING MULTICAST MTU:1500

RX packets:0 errors:0 dropped:0 overruns:0

TX packets:0 errors:0 dropped:0 overruns:0

collisions:0 txqueuelen:0

RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Listing 3.6: The victl command.

By running the command dmesg it is possible to debug the module, and see step by step

what actions is the virtual interface executing. In listing 3.7 we have an example, were two

interfaces, wlan0 and wlan1 were added to the virtual interface vi0. In this example we can

clearly see the vi finding a match in the neighboring database and using both wlan0 and wlan1

to send and receive the data coming from and to the application layer.

01 [2406.936061] debug.vi: sending interface index=0

02 [2406.936066] debug.vi: deliver packet through wlan1

03 [2406.936560] debug.vi: handle_frame

04 [2406.936566] debug.vi: entering vi_ndb_insert

05 [2406.936570] debug.vi: entering ndb_insert

06 [2406.936574] debug.vi: ndb_insert, hash: 147

07 [2406.936578] debug.vi: ndb_insert looking for existing entries

08 [2406.936583] debug.vi: ndb_insert, found matching entry

09 [2406.936588] debug.vi: ndb_insert, update existing entry

10 [2406.936592] debug.vi: ndb_insert, done

49 CHAPTER 3. OUR PROPOSED ARCHITECTURE

11 [2406.936595] debug.vi: leaving vi_ndb_insert

12 [2406.936599] debug.vi: handle_frame_finish

13 [2406.936603] debug.vi: passing up local frame

14 [2406.936608] debug.vi: pass_frame_up from wlan1 to vi0

15 [2406.936612] debug.vi: frame passed up

16 [2406.936616] debug.vi: leaving handle_frame_finish

17 [2406.936636] debug.vi: vi_loading_blance_policy return sending interface index=0

18 [2406.936641] debug.vi: sending interface index=0

19 [2406.936645] debug.vi: deliver packet through wlan0

20 [2407.942201] debug.vi: vi_loading_blance_policy return sending interface index=0

21 [2407.942209] debug.vi: sending interface index=0

22 [2407.942214] debug.vi: deliver packet through wlan0

23 [2408.950183] debug.vi: vi_loading_blance_policy return sending interface index=1

24 [2408.950191] debug.vi: sending interface index=1

25 [2408.950196] debug.vi: deliver packet through wlan1

26 [2409.061191] debug.vi: vi_loading_blance_policy return sending interface index=1

27 [2409.061197] debug.vi: sending interface index=1

28 [2409.061202] debug.vi: deliver packet through wlan1

29 [2409.156279] debug.vi: vi_loading_blance_policy return sending interface index=1

30 [2409.156286] debug.vi: sending interface index=1

31 [2409.156291] debug.vi: deliver packet through wlan1

Listing 3.7: Debugging the virtual interface module.

3.3 Limitations

During the implementation and testing of the vi module, some limitations were found,

unfortunately due to time constraints we could not solve them all, the ones that still apply are

presented next.

The first identified problem was that the vi module will only work if the access points to which

the network interfaces are connected to, are in the same network, since the virtual interface can

only have a single IP address at a given time. So the usage of this module is limited to an ad-

hoc scenario or to a situation where there are several APs, all under the same network (e.g.

Campus University network).

Another limitation that was identified is that by adding the hooks to intercept the data, we are

also adding a regular timer tick, The timer tick is a timer interrupt that is usually generated HZ

(Hertz) times per second, with the value of HZ being set at compile time and varying between

around 100 to 1500. Running without a timer tick means the kernel does less work when idle

and can potentially save power because it does not have to wake up regularly just to service the

timer, and since we are adding such interrupt, this means the kernel will not go into idle, and will

not be able to save as much energy as it would. Figure 3.8 shows what processes/drivers are

keeping the mobile device active. As we can see the vi module is one of the main causes for

wakeups (16.2%), taking a toll in the mobile devices energy savings, when in idle.

50 CHAPTER 3. OUR PROPOSED ARCHITECTURE

Figure 3.8: Kernel main causes for wakeups, measured with PowerTop1.

We considered that the energy consumption of a certain interface when in idle time is zero,

which is not actually true. For a more correct approach the energy a certain interface is using

when in idle, should be taken in consideration in the used algorithm. It would be interesting to

make such modification and compare the results, so that we could understand if there is actually

any impact in the amount of energy saved by the power saving mechanism implemented within

the vi module.

Finally, the vi module will only work with physical interfaces using the following network

standards:

 IEEE 802.11/WLAN;

 IEEE 802.15/Bluetooth;

 IEEE 802.3/Ethernet.

1 PowerTop, http://www.lesswatts.org/projects/powertop/

51 CHAPTER 3. OUR PROPOSED ARCHITECTURE

3.4 Security Concerns and Other Aspects

The broadcasting nature of transmission and the nodes self routing environment opens up

the perception of security in ad-hoc networks. The security issue of ad-hoc is of large concern

taking into account its various factors like its open network, mobility factor and other factors. In

this section we address some of this security concerns and since the security behind the

module is out of scope of this thesis, we merely identify possible issues and propose some

solutions intended to solve them.

The first identified problem is related with the way we estimate RTT. The RTT estimation is

made based on the data that is entering the device via the available network interfaces, if there

is an attacker placed between the device and a certain AP, he could alter the values present in

the ACK packets used by TCP to estimate the RTT, which will then affect the way we choose

the physical interfaces. The RTT estimator will take the RTT information out of the packets

entering the mobile device, and since these values were altered by the attacker, we are actually

basing our decisions in values that are not reliable.

The second attack that was indentified may also affect the decision of the VBA. If an attacker

is able to fake the periodically messages sent by the routing protocol, which we use to update

the neighboring database, then the VBA will think that interface is active. This attack will cause

the virtual interface to send data to physical network interfaces that have no available

neighbors.

Both identified attacks can be performed by the method known as Man-In-The-Middle, where

attackers intrude into an existing connection to intercept the exchanged data and inject false

information. It involves eavesdropping on a connection, intruding into a connection, intercepting

messages, and selectively modifying data.

In order to provide solutions to the security issues involved in ad-hoc networks, we must

elaborate on the two of the most commonly used approaches in use today:

• Prevention

• Detection and Reaction

Prevention dictates solutions that are designed such that malicious nodes are thwarted from

actively initiating attacks. Prevention mechanisms require encryption techniques to provide

authentication, confidentiality, integrity and non-repudiation of routing information. Among the

existing preventive approaches, some proposals use symmetric algorithms, some use

asymmetric algorithms, while the others use one-way hashing, each having different trade-offs

and goals.

52 CHAPTER 3. OUR PROPOSED ARCHITECTURE

Prevention mechanisms, by themselves cannot ensure complete cooperation among nodes

in the network. Detection on the other hand specifics solutions that attempt to identify clues of

any malicious activity in the network and take punitive actions against such nodes

The first attack can be mitigated by measuring the RTT using a different approach. Instead

of basing our RTT estimation in the TCP traffic entering the device, we can create and send

ICMP packets via all network interfaces. The messages being sent must be encrypted and

signed, so that we can verify their integrity and authenticity. This method will give us a more

correct reading in terms of RTT but we are also adding additional overhead. Other problem that

might also occur with this solution is firewalls blocking ICMP packets, being this the main reason

why we opted for the lesser secure but more efficient method of estimating the RTT.

One way of lessen the impact of the second attack, is to periodically send encrypted packets

(for example crypto puzzles) to all available neighbors and wait for a response. A crypto puzzle

is a quickly computable cryptographic problem formulated using the time, a server secret, and

additional client request information. In order to have server resources allocated to it for a

connection, the client must submit to the server a correct solution to the puzzle it has been

given. If we get a response from a certain neighbor it means that the interface has in fact

available neighbors to which it can send the data.

53 CHAPTER 4. PERFORMANCE EVALUATION

4 Performance Evaluation

This chapter is dedicated to the performance evaluation of the main building blocks of this

thesis, attempting to answer the questions that lead to this work and that can be aggregated

into three main aspects:

 Is the overhead added by the virtual interface excessive?

 Are the implemented mechanisms improving the total throughput? If yes, in which

situations?

 Is the power consumption mechanism, present in the vi module, saving any energy?

Answers to these questions are provided by relying on several experimental sets, where the

number of access points, interfaces, and also the type of data flows was varied.

The neighbor database look-up and the detour the packets have to take naturally impair

throughput. So, the performance of the virtual interface was measured according to throughput,

overhead time and also Handover-time in case of a vanishing link, since packets can get lost.

The chapter starts by detailing the goals for the experiments, and the followed methodology.

A generic description of the evaluation parameters and scenarios is then provided, followed by a

description of the topologies implemented, and of the traffic settings as applied to the

experiments. Section 4.2 explains in a detailed manner the results obtained during the

experiments and which refer to packet loss, energy consumption, as well as end-to-end delay

and total throughput. Finally, section 4.3 summarizes the results obtained in the test

experiments and answers the questions presented above.

4.1 Evaluation Objectives and Settings

The experiments presented in this section have as main goal to analyze the virtual interface

vs. normal scenario (without virtual interface) in terms of end-to-end delay, packet jitter, as well

as packet loss and total throughput. For a specific IP datagram х, the end-to-end delay is

defined as the time it takes for the packet to travel from source to destination, i.e. the interval

between the time the packet was sent and the time it was received [4], as in equation 4.1.

 (4.1)

54 CHAPTER 4. PERFORMANCE EVALUATION

Where and represent the time at which packet was received and transmitted,

respectively.

The inter-packet delay is defined as the variation between the delays of two consecutive

packets. For two consecutive packets, x and y, x being the first packet received, the inter-packet

delay is defined in equation 4.2.

 (4.2)

Packet loss, P, is here defined as the ratio between the number of lost packets and the

number of packets that were sent, not counting the packets received out-of-order. This

computation is performed based on the sequence number of the packets received. For every

flow, the expected packet sequence number is kept, and if the received sequence number is

higher than the expected, then the total number of lost packets is incremented. Packet loss is

expressed in percentage, according to equation 4.4.

 (4.4)

Where N is the number of total packets that were sent by the source node and L is the

number of packets that did not reach the destination node.

Throughput, T, is here defined as the ratio between the RCV buffer size and the RTT

(Round-trip time) [37]. Hence, total throughput is calculated as described in equation 4.5.

Throughput is expressed in Mbps, the RTT in seconds and the buffer size in Megabits.

 (4.5)

Energy consumption, given by W, is here defined as is the rate at which work is done when

one ampere (A) of current flows through an electrical potential difference of one volt (V). Energy

consumption is expressed in milliwatt hour (mWh), according to equation 4.6.

 (4.6)

A milliwatt-hour is the amount of energy equivalent to a steady power of 1 milliwatt running

for 1 hour.

http://en.wikipedia.org/wiki/Ampere
http://en.wikipedia.org/wiki/Potential_difference
http://en.wikipedia.org/wiki/Volt

55 CHAPTER 4. PERFORMANCE EVALUATION

4.1.1 Traffic and Network Settings

The traffic used in the simulations was generated by relying on iperf1, since it is supported by

both Linux and Windows operating systems, via its graphical component jperf2 . It is more

focused on measuring the network available bandwidth, capable of measuring bandwidth and

datagram loss, it also presents the results of jitter and RTT. Additionally it is also possible to

specify a traffic type, TCP or UDP, although it is not possible to specify the traffic pattern. To

evaluate the overhead and handover time, we used the command ping.

For each test, in terms of measuring the available bandwidth we also tested different packet

sizes, which are important to determine the per-packet overhead. The values are averaged over

20 readings and each reading takes 100 seconds to acquire (except the handover time that

requires only the number of packets lost while handover is occurring).

All readings were taken on a laptop Sony Vaio PCG-7N2M. A Tsunami desktop computer

using Windows Vista operating system was also used as server. The access points used in the

experiments were routers Fonera+3, flashed with the Linux based firmware DD-WRT4.

 Sony Vaio PCG-7N2M

o Memory: 1GB

o Intel® Centrino Core™ Duo T2300 Processor 1.66 GHz

o Ubuntu, Linux 2.16.31.14

o Virtual Interface Module v2.0

o Wi-Fi interface 1: Integrated wireless 802.11a/b/g

o Wi-Fi interface 2 (usb): D-Link DWL-G122 High Speed 2.4GHz (802.11a/b/g)

o Wi-Fi interface 3 (usb): D-Link DWL-122 (802.11b)

o Iperf client

 Tsunami Desktop

o Memory: 3GB

o Intel® Core™ i7 CPU 920 @ 2.67GHz

o Windows Vista™ Home Premium 32bits

o Onboard gigabit LAN interface

o Iperf Server

1 Iperf, http://sourceforge.net/projects/iperf/

2 Jperf, http://sourceforge.net/projects/jperf/

3 Fonera, http://www.fon.com/

4 DD-WRT, http://www.dd-wrt.com

56 CHAPTER 4. PERFORMANCE EVALUATION

Our solution was tested with AODV-UU [43] routing protocol and different types of data. The

obtained results were of course compared with a simple scenario with no virtual interface, no

bandwidth aggregation and no load-balancing mechanisms, referred as RAW in the following

section. The detailed testbed configuration used for the Fonera+ routers, can be found in the

annex section of this thesis.

The tests were done in both an ideal environment, where there was no overload of the APs,

and in a saturated environment, where we have several different users using the ad-hoc

network simultaneously, lowering the throughput of each individual node. This is an interesting

test scenario, that was considered in order to find out the different situations for the vi to perform

better.

4.1.2 Main Topologies

The experiments run considered three different topologies as basis for the different

developed scenarios. In each topology we test both the load-balancing mechanism as well as

the power saving mode, in terms of throughput and delay, to understand the actual impact of

the virtual interface. The first topology considered (Topology I) is illustrated in Figure 4.1.

Topology I serves as a control test, as it only contemplates one access point and one physical

network interface present in the mobile device A.

For the mentioned topology, node A is connected by means of an ad-hoc network. The

purpose of this configuration is related to the need to get data that serves as control, relating to

the situation where we are not using the virtual interface, which will then be compared with more

complex scenarios where we use the vi. We also use this topology to estimate the delay added

by the virtual interface, in order to understand the impact the vi is causing in terms of throughput

in a situation where only one single node is available. The virtual interface will be situated

behind the physical interface, as presented in Figure 4.1.

A
Dest.

B
(Source)

192.168.2.4
ath0

192.168.2.1

eth0

192.168.0.1 192.168.0.141

Switch

802.11b/g

Interface

Wireless

Wired

Components

Virtual

Interface

Figure 4.1: Topology I, one network interface and one AP.

57 CHAPTER 4. PERFORMANCE EVALUATION

The second considered topology (Topology II) is represented in Figure 4.2. Topology II is in

fact similar to I, being the only difference the number of physical network interfaces present and

the number of access points, which was now increased to 2. Such increment will assist in trying

to understand the impact caused by the number of interfaces in the performance evaluation of

the virtual interface.

What we pretend to test with this topology is how the extra access point will impact the

usage of the vi in terms of total throughput and overhead, since in this case a new path will be

available, which should cause a slight increment in terms of overhead. Two tests will be made

using this topology, in the first one, both access points will only have user A connected and

transmitting data, while in the second test, the access point B will be saturated with data from a

third party computer. Both results will then be compared, in order to understand how the vi will

react to this change in the topology.

A
Dest.

B

(Source)

192.168.2.4

ath0

192.168.2.1

eth0

192.168.0.1

192.168.0.141

Switch

802.11b/g

Interface

Wireless

Wired

Components

C
eth0

192.168.0.2

ath0

192.168.2.2

Virtual

Interface

Figure 4.2: Topology II, two network interfaces and two APs.

Finally topology III is illustrated in Figure 4.3. It still consists of paths that are one hop long,

but now there is just one AP and one more physical network interface in comparison with

topology II. In this experiment the AP is saturated with data from a secondary source. Our

expectations were to observe what would be the reaction of the vi when there is an increment in

the number of interfaces, in a worst case scenario where there is just one AP and multiple

network interfaces. For this scenario we also used different network interfaces, two IEEE

802.11g and one IEEE 802.11b.

58 CHAPTER 4. PERFORMANCE EVALUATION

A Dest.B
(Source)

192.168.2.4 192.168.0.141

Switch

ath0

192.168.2.1

eth0

192.168.0.1
802.11b/g

Interface

Wireless

Wired

Components

Virtual

Interface

Figure 4.3: Topology III, three network interfaces and one AP.

4.2 Evaluation Results

In this section we present the experimental results. For each scenario run, results

concerning packet loss, delay, and throughput as well as power usage are presented and

explained.

Throughput was measured using jperf as mentioned in the previous section. This is a client-

server based tool, which can measure both TCP and UDP traffic. Raw measurements were

taken without the virtual interface. The varying packet sizes are relevant to determine the per-

packet overhead. The values are taken during 100 seconds, averaged over 20 readings and

show the throughput between two nodes in Mbps. To evaluate the delay and handover time

added by the vi module, we used the command ping.

 Finally, to measure the total energy consumption during a certain period of time, we created

a bash script that extracts to a file the amount of energy in miliwatt hour (mWh) the mobile

device has. The bash script can be found in Annex VI.

4.2.1 Experiment 1

The first experiment relies on Topology I (cf. section 4.1.2) which represents a simple

topology, since we want to test the difference of performance between the vi and the raw

measurements taken without it. In the topology, node A corresponds to a sender with just one

physical interface and node Dest. corresponds to the destination. The sender generates traffic

according to the settings described in section 4.1.1 and packet sizes vary as 1 Kbyte, 2 Kbytes,

59 CHAPTER 4. PERFORMANCE EVALUATION

4 Kbytes, 8 Kbytes, 16 Kbytes and 32 Kbytes, in order to allow measuring the per-packet

overhead.

Throughput

Starting by the analysis concerning the achieved throughput using TCP data, Table 4.1

shows the throughput and corresponding standard deviation (σ) when using the virtual

interface, and the raw measurements taken without it. Graph 4.1 plots that information, so it is

possible to make a better comparison between both situations.

 1KB
STD
(σ)

2KB
STD
(σ)

4KB
STD
(σ)

8KB
STD
(σ)

16KB
STD
(σ)

32KB
STD
(σ)

RAW
(Mbps)

21,914 0,381 22,139 0,343 22,814 0,421 23,108 0,396 23,363 0,414 23,743 0,442

Virtual
interface
(Mbps)

21,047 0,511 21,243 0,547 21,984 0,650 22,455 0,682 23,022 0,715 23,482 0,788

Virtual
Interface w/

Power
saving

mode on
(Mbps)

21,001 0,523 21,109 0,581 21,807 0,694 22,393 0,702 22,900 0,763 23,374 0,802

Table 4.1: Wlan throughput in Mbps, different packet sizes.

Graph 4.1 Total throughput in Mbps, using one interface and one AP (TCP data).

The results we obtained for the first scenario show that the difference in terms of throughput

between using or not the virtual interface for TCP, with just one interface, is very small, about

3.1% less in average with power saving off and 3.5% while on. Which is a good indicator, since

in this topology the vi is simply relaying packets to the available interface. With more network

interfaces and more available access points, this small delay added by the vi, can be easily

0

5

10

15

20

25

1K 2K 4K 8K 16K 32K

Th
ro

u
gh

p
u

t
(M

b
it

s\
s)

Packet Size

WLAN throughput in Mbps - TCP

RAW

VI

VI Power
Saving mode

60 CHAPTER 4. PERFORMANCE EVALUATION

covered by the increase in throughput resulted from the simultaneous usage of those interfaces,

as we will be seeing in experiment two and three.

Delay added by the vi module

Regarding the delay added by the vi, Table 4.2 shows the round-trip time in milliseconds and

zero percentage of packet loss for the two same situations. This information allows us to have a

very clear image of the delay added by the virtual interface since ping was used with the default

packet size (64bytes). The smaller the packets, the more of them there are, which makes it

easier to calculate the difference in terms of RTT between the control, designed as RAW, and

our solution, since the differences are most likely caused by the vi module The values are

taken during 100 seconds and averaged over 20 readings.

 Average RTT (ms) Std. Deviation (σ)

RAW 1,730 0,009

Virtual Interface 1,799 0,016

Virtual Interface w/ Power saving mode on 1,808 0,014

Table 4.2: Ping results, 1 interface and 1 access point.

As we can see by the results presented in Table 4.2 the delay added by the vi, while the

power saving mode is off, is around 4.0%, and roughly 4.2% with the power saving mode on,

which is almost irrelevant (less than 0,1ms). The standard deviation also increases, while using

the vi, since it is periodically estimating the RTT values for the available interfaces, which

causes some fluctuations in terms of the total throughput. Also, there was zero percent packet

loss for all three test situations.

The obtained results proves that using the vi with only one interface, does not causes too

much impact in terms of total throughput or adds excessive overhead, which was a negative

factor in previous versions.

Handover

Still in Experiment 1, we calculated the handover time, using the command ping. The

number of missing packets were counted and multiplied by the ping frequency.

61 CHAPTER 4. PERFORMANCE EVALUATION

The type of handover that was measured was the horizontal handover, where the MAC level

protocol remains the same, but the route changes. We trigger a route change by physically

detaching the interface of a node. The results are presented in Table 4.3. Handover times are

averages over 20 readings with standard deviation σ. Entries of the form "VI/x" must be

understood as "Virtual Interface with a maxdiff value of x".

Type Interface Time (s) Standard Deviation (σ)

Horizontal RAW

Vi/10

Vi/100

Vi/1000

1.5

1.8

2.3

2.5

0,5

0.92

0.73

0.67

Table 4.3: Handover time in seconds, using Wi-Fi interfaces.

Under our setup, when the vi was not being used, we measured a packet loss of roughly 1.5

packets when the route changed from one hop to another. Each packet that is lost corresponds

to roughly one second passed by, since the ping frequency that was used was one second.

From the results presented in Table 4.3 we see that packet loss increases with increasing

maxdiff threshold. The former is reasonable because the bigger the maxdiff value, the more the

priority policy gets enforced, and a pure priority driven MAC switching would not lead to any

switching at all. As expected, the smaller maxdiff gets the less stable the handover becomes.

However, in our scenario a maxdiff value of 10 was sufficient to guarantee stable handover

while changing interface priorities.

Power Consumption

Finally in Experiment 1, we calculated the amount of energy the mobile consumed during

600 seconds, with and without the vi module, so we could understand this abstraction impact on

the energy being consumed by the mobile device. The values in Table 4.4 are presented in

miliwatt hour (mWh). They were measured during 600s and averaged over 10 readings. To

measure the consumed energy during this period we used the bash script presented in the

Annex VI. It extracts the energy the device has, for each 10 seconds. The following table

presents both the average energy consumption in mWh per second, and the total energy

consumed during the 600s period.

62 CHAPTER 4. PERFORMANCE EVALUATION

Average Energy

Consumption (mWh) per

second

Average Energy

Consumption (mWh) in

600s

Standard

Deviation (σ)

RAW 5,294 3123,333 1,035

Virtual

Interface
5,316 3136,667 1,209

Table 4.4: Energy consumption in milliwatt hour.

As we can see in Table 4.4, the difference in terms of energy consumed during 600 seconds,

between both scenarios, was only 13,33 mWh, just 0,427% more. This result proves that the

module consumes just a minor added amount of energy when compared with a control

scenario, designed as RAW in Table 4.4.

Overall there is a slight overhead when relying on the vi, be it from a throughput, power

consumption, or from a delay perspective. This is expected, as by adding a layer of abstraction,

we are also adding overhead in computation, with the expectations to introduce significant

advantages.

4.2.2 Experiment 2

As in the previous experiment, node A is the single source transmitting data and node Dest.

corresponds to the destination, but in this case we increased the number of interfaces present in

the mobile device as well as the number of access points to which they are connected to. The

experiment 2 is divided in two scenarios, both rely on Topology II (cf. section 4.1.2). While in the

first test, the two existing APs are only being used by node A, in the second test, AP C is also

being used by a second node that is constantly sending data, to simulate a saturated AP. The

two physical interfaces used for this experiment were IEEE 802.11g.

In this experiment we investigate wherever the virtual interface is capable of detecting a

saturated AP and reducing the amount of data a certain physical interface is sending to it, by

diverting part of the traffic to a second physical interface that is using a less saturated AP.

Two Access Points, no saturation

For this scenario we used one data flow coming from a single application and multiple data

flows coming from different applications, so the available interfaces could be used

simultaneously. Starting with the analysis of the total throughput using TCP data, Graph 4.2

63 CHAPTER 4. PERFORMANCE EVALUATION

shows the throughput when using the virtual interface with one and several different data flows

during 100 seconds, averaged over 20 readings. The packet size used for this experiment was

32 Kbytes.

Graph 4.2: Total throughput in Mbps, using the vi with two interfaces and two APs (TCP data).

 Average

Throughput

(Mbit/s)

Standard Deviation

(σ)

Packet loss

(%)

One Data Flow 23,627 0,610 1%

Multiple Data Flows 42,615 5,161 3%

RAW 23,879 0.410 0%

Table 4.5: Average throughput in Mbps, using the vi with two interfaces and two APs.

As we can see in the results presented by Graph 4.2, the total throughput when using the

virtual interface with TCP data (while sending a single data flow) is very similar in comparison

with RAW measurements taken without the virtual interface. On the other hand the values

obtained when sending different data flows, are nearly 79% higher when comparing with the

RAW measurements from Experiment 1. This increment results from the fact that we are

simultaneously using several physical interfaces to send the different data flows.

0

5

10

15

20

25

30

35

40

45

50

1 11 21 31 41 51 61 71 81 91

Th
ro

u
gh

p
u

t
(M

b
it

/s
)

Time (s)

Throughput (Mbit/s)

RAW

One Flow

Multiple
Flows

64 CHAPTER 4. PERFORMANCE EVALUATION

Also if we look closely in Graph 4.2, it takes around 5 seconds for the throughput to reach

more than 40Mbit/s, this happens because the mobile device will only be using both physical

interfaces simultaneously, when the first interface finishes transmitting the data from the first

data flow in its queue and moves on to the second data flow. This is done to ensure that we will

not have a huge amount of packets reaching the correct destination out of order.

The packet loss is in average 1% and 3% (cf. Table 4.5) for one data flow and multiple data

flows respectively, due to the fact that we are constantly switching the physical interfaces used

to transmit the data, which causes some packets to be lost and some fluctuations in terms of

throughput, raising also the standard deviation.

Two Access Points, AP C is saturated

For this scenario we saturated one of the access points, to verify how would the vi adapt to a

sudden increase in terms of the RTT value measured for a certain physical interface, connected

to that AP. As in the previous test experiment, single and multiple data flows were employed.

The values obtained were taken during a time frame of 100 seconds, and averaged over 20

readings. For a better comparison, we also measured the throughput of a single interface,

without using the vi module, designated as RAW, connected to a single saturated AP. The

packet size used for this experiment was 32 Kbytes.

Graph 4.3: Total throughput in Mbps, with two interfaces and two APs (one saturated) (TCP data).

0

5

10

15

20

25

30

35

40

1 11 21 31 41 51 61 71 81 91

Th
ro

u
gh

p
u

t
(M

b
it

/s
)

Time (s)

Throughput (Mbit/s)

RAW

One Flow

Multiple Flows

65 CHAPTER 4. PERFORMANCE EVALUATION

For one continuous data flow, the total throughput when using the vi, during the time frame 1

to 30 seconds is very similar to the RAW measurements (cf. Graph 4.3), since the vi is actually

using the interface connected to the saturated AP. Once it changes to the second AP that is

currently not being used by another user, it causes a sudden increase in the total throughput,

reaching roughly 24 Mbps as seen in Graph 4.3. What happens is that the VBA assigns a lower

percentage to the interface using the saturated AP, which will lower the time that such interface

will be used to send the data, increasing the total throughput to an average of 19,125 Mbps as

seen in Table 4.5.

In this specific scenario, with a single data flow, the usage of the vi module with two different

physical interfaces is in average, increasing 63% the total throughput, when comparing with a

situation where a single interface is connected to a saturated AP (11,713 Mbps).

When sending different data flows, we obtained a very similar result to the one presented in

the previous scenario (2 APs, no saturation). It takes around 6s for the throughput to reach

35Mbps, when the vi starts using both physical interfaces, and consequently the two APs. Since

one of the APs is dividing the bandwidth between node A (cf. Figure 4.2) and a third party user,

the total throughput when using both network interfaces only reaches a little more than 35Mbps

in comparison with the 42Mbps obtained in the previous test scenario.

 Average

Throughput

(Mbit/s)

Standard Deviation

(σ)

Packet loss

(%)

One Data Flow (vi) 19,125 5,491 2%

Multiple Data Flows

(vi)
33,575 5,551 3%

RAW 11,713 0,428 1%

Table 4.6: Throughput in Mbps, using two interfaces and two APs (one saturated).

The load balancing mechanism presented in the vi module slightly increases the packet loss

and standard deviation as seen in Table 4.6. If we compare both the standard deviation results

of this and the previous scenario, when sending a single and continuous data flow, there is a

relatively high increment, which is caused by the difference in throughput values obtained for

the two access points (11.5 Mbps and 23.5 Mbps).

66 CHAPTER 4. PERFORMANCE EVALUATION

4.2.3 Experiment 3

To understand and find the potential limitations of the vi module, we decided to create a

worst-case scenario. It relies on Topology III (cf. section 4.1.2), where we have three physical

network interfaces (two IEEE 802.11g and one IEEE 802.11b) connected to just one saturated

access points. For this experiment we also used one single and continuous data flow coming

from a single application, and multiple data flows as well, so that the available interfaces could

be used simultaneously.

Starting with the analysis of the total throughput using TCP data, Graph 4.4 shows the

throughput when using the virtual interface with one and several different data flows during 100

seconds, averaged over 20 readings. The packet size used for this experiment was 32 Kbytes.

In Graph 4.4 we also added the throughput of a single interface, calculated without using the vi

module, designated as RAW, connected to a single saturated AP (values calculated in

experiment 2).

Graph 4.4: Total throughput in Mbps, with three network interfaces, and one saturated AP (TCP data).

If we take in consideration that this is a worst case scenario, where all access points are

being used by several users, the results presented in Graph 4.4, are very satisfactory. While

sending a single and continuous data flow the throughput is slightly lower when comparing with

the RAW measurements, due to the fact that there is a network interface with a lower bandwidth

0

2

4

6

8

10

12

14

16

18

1 11 21 31 41 51 61 71 81 91

Th
ro

u
gh

p
u

t
(M

b
it

/s
)

Time (s)

Throughput (Mbit/s)

RAW

One Flow

Multiple Flows

67 CHAPTER 4. PERFORMANCE EVALUATION

(IEEE 802.11b) than the other two. This network interface is used during a smaller period of

time, meaning the load balancing mechanism detected that the estimated RTT for that link was

higher than the remaining.

When using multiple data flows the total throughput increases due to the fact, that multiple

network interfaces are used simultaneously. In this case, by establishing multiple connections to

a single AP, its available interface is distributed equally through all active users.

When testing with just one network interface, without the vi module, we will have two active

users connected to the available AP, our physical interface and third party user saturating the

AP, so its bandwidth will be divided between the two users. For this experiment when using the

vi module, we had three physical interfaces plus the third party user connected to the same AP,

which means we are getting roughly three quarters of the AP‟s bandwidth instead of just half,

resulting in a increment of the total throughput. Therefore, the percentage of total throughput is

a function of the ratio of interfaces (instead of ratio of users).

 Average

Throughput

(Mbit/s)

Standard Deviation

(σ)

Packet loss

(%)

One Data Flow (vi) 9,915 2,664 2%

Multiple Data Flows

(vi)
14,756 1,021 4%

RAW 11,713 0,428 1%

Table 4.7: Throughput in Mbps, using three interfaces and one saturated AP.

As seen in Table 4.7 both the packet loss and standard deviation, for the two test

experiments are above the values obtained for the control scenario, described as RAW. This

difference can be easily explained due to the fact that for this experiment we have three network

interfaces, one of them has a lower bandwidth than the other two, which causes a bigger

fluctuation in terms of total throughput. The one percent increment in the packet loss may result

from the usage of multiple interfaces in a saturated environment.

4.2.4 Experiment 4

Finally in Experiment 4 we tested the power consumption mechanism, to try to understand if

by using fewer interfaces to send the data we are able to diminish the amount of energy being

spent and if the difference is significant. This experiment relies on Topology II (cf. section 4.1.2),

where node A is the single source transmitting data and node Dest. corresponds to the

68 CHAPTER 4. PERFORMANCE EVALUATION

destination. The two network interfaces (1x IEEE 802.11g, 1x IEEE 802.11b) are connected to

two access points. Real traffic (different data flows, from different applications) was used, to

simulate a real-life environment.

We used the bash script presented in Annex VI to extract the amount of energy being

consumed every 10 seconds, and jperf to measure the throughput. The data for both

measurements was collected over 600 seconds (10 minutes) and is presented in Graph 4.5.

Each measurement is displayed according to its own axis, so we can then verify if there is a

correlation between the throughput and the energy values. The energy consumption is

presented in miliwatt hour (mWh), while the throughput is displayed in Mbps.

Graph 4.5: Correlation between the total Throughput in Mbps and the Consumed Energy in miliwatt hour.

We can clearly verify from Graph 4.5, that when there is an increment is terms of throughput,

there is also a slight increment is terms of the energy being consumed by the device. The

opposite is also true. This happens because the power consumption mechanism, depending on

the size of the data flow, decides if the device should use the network interfaces picked by the

VBA or the interface with the lowest energy consumption to send the data.

When a data flow has a significant size, it is usually better to maintain the VBA‟s policy, since

the device will transmit the data at a higher rate, which will result in a lower amount of energy

being consumed to send that amount of data. When data flows have a relatively small size, it

takes roughly the same time to send them when using one or several network interfaces,

0

1

2

3

4

5

6

7

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

m
W

h
)

p
e

r
se

co
n

d

Th
ro

u
gh

p
u

t
(M

b
p

s)

Time (s)

Throughput (Mbps) and Energy Consumption (mWh)

Throughput Energy
Consumption

69 CHAPTER 4. PERFORMANCE EVALUATION

resulting in a noticeable energy saving when using just one of those interfaces. This is exactly

what we see in Graph 4.5.

During this experiment, the mechanism saved roughly 190 mWh of battery in our device,

which for a laptop is not very significant, but in a smaller and more economic device, such as a

mobile phone or a sensor, this difference can have a very big impact, since it gives extra time of

battery.

4.3 Performance Evaluation Summary

The results we obtained in terms of delay added by the vi module are very promising,

especially if we compare them with the vi‟s previous version results [28][32], where the added

overhead was so high that it caused the throughput to go down around 30%, mostly caused by

the way the authors used to intercept the data. Another expected result was the packet loss

percentage getting higher with the usage of several interfaces and APs, which is normal, since

the number of available paths to send the information also increases.

By adding the aggregation and load-balancing mechanisms to the virtual interface we were

able to significantly increase the total throughput in around 70% (average) when sending

multiple data flows, by using multiple network interfaces simultaneously, proving that it is

possible to have a virtual interface hiding the heterogeneity of the used devices from the upper

layers, without adding an excessive amount of delay, and increasing the total throughput, even

in a worst-case-scenario.

In terms of the power consumption mechanism, the obtained values are also very promising;

by using this mechanism we were able to optimize the amount of energy being consumed. The

amount of saved energy is relatively low, but for a small device, such as a mobile phone or a

sensor, with very strict energy concerns, such difference can be quite significant, resulting in

extra time of battery.

We are now able to answer the questions presented in the beginning of this chapter:

Is the overhead added by the virtual interface excessive?

By adding Netfilter hooks we were able to significantly reduce the amount of delay added by

the vi module, which is now less than 0,1ms, resulting in a total increment of 4%. The obtained

results prove that using the vi with only one network interfaces, does not causes a high impact

70 CHAPTER 4. PERFORMANCE EVALUATION

in terms of total throughput nor does it add excessive overhead, which was a negative factor in

previous versions.

Are the implemented mechanisms improving the total throughput? If yes, in which

situations?

In all experiments, when using multiple data flows, we were able to significantly increase the

total throughput when using the vi module with multiple interfaces, even in a worst-case-

scenario with multiple network interfaces and just one available AP. When sending just one

continuous data flow, the average throughput is slightly lower when there is no saturation of the

APs being used, but it is higher when at least one AP is saturated, since the load balancing

mechanism is able to detect the saturated link, and reduce the amount of data being sent via

that network interface.

Overall, using this type of virtual interfacing is extremely valuable for multiple simultaneous

flows (e.g. use of multiple applications) which in fact corresponds to today‟s majority of

situations. Assuming a single flow, then the added cost is not significant, comparing to the

benefits provided overall for multiple flow usage.

Is the power consumption mechanism, present in the vi module, saving any energy?

By using the vi module, with the power consumption mechanism on, we were able to reduce

the amount of energy being consumed by using a network interface with a lower energy

consumption. The amount of energy saved is not very high but if we apply the solution to

devices with very strict power limitations, such as mobile phones, such result will be beneficial.

In our device, the usage of this power consumption mechanism resulted in energy saving of

roughly 5.4%.

71 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5 Conclusions and Future Work

This chapter relates to the summary and conclusions to be drawn from the work developed.

We implemented an end-to-end communication abstraction that can be used in

heterogeneous mobile ad-hoc networks. Such networks are characterized by different MAC

technologies used among the nodes. The solution is based on a virtual interface (vi) approach,

which allows the usage of all interfaces presented in a mobile device simultaneously, while

hiding the heterogeneity from the applications and allow any number of interfaces to be added,

increasing the total throughput.

Since we are looking for a virtual interface, we are not interested in packet forwarding, but

the idea of storing a MAC/interface mapping based on incoming packets is also suitable for local

traffic. We have implemented a virtual interface (vi) that adopts this mechanism. Like the Linux

Ethernet Bridge, the vi represents a regular layer-two-device and can be configured accordingly.

Using a custom Netfilter target has shown to be very promising solution, that added very little

overhead and proved to be very flexible. Such a target can be loaded and unloaded from kernel

at any time.

Implementing a virtual interface for transparent heterogeneous mobile ad-hoc networks has

proven to be a good approach. Reasonable handover times can be achieved when using any

routing protocols. The throughput rates when using the vi module, with several network

interfaces, are significantly higher, reaching in some situations an increase of 79%. In terms of

the power consumption mechanism, the experimental values are also very promising; by using

this mechanism we were able to optimize the amount of energy being consumed.

As future work, we would like to extend the virtual interface to work in different access

networks, others than ad-hoc networks, with for example several 3G and 802.11x interfaces.

Moreover, it would be interesting to extend the module to smaller devices, such as mobile

phones, to see how it would impair their performance in terms of their total throughput and

energy consumption.

Finally, in order to simplify the process of estimating the energy being consumed for every

network interface, we considered that the energy consumption of a certain interface when in idle

time is zero. For a more correct approach, the energy a certain interface is consuming when in

idle, should also be taken as a variable in the used algorithm. It would be interesting to make

such modification and compare the results, so we could understand if there is actually any

impact in the amount of energy saved by the power saving mechanism, when considering the

idle time as an additional variable.

72

6 Bibliography

[1] S. Dhawan, “Analogy of Promising Wireless Technologies on Different Frequencies:

Bluetooth, WiFi, and WiMAX”. In The 2nd International Conference on Wireless Broadband

and Ultra Wideband Communications (AusWireless 2007), Sydney, August 2007.

[2] L. Feeney, B. Ahlgren, and A. Westerlund, “Spontaneous networking: an application-

oriented approach to ad-hoc networking”, IEEE Communications Magazine, 39(6), June

2001.

[3] L. Chen, S. Das, M. Gerla and A. Nandan, “Moving between infrastructure and ad-hoc

wireless networks: 'opportunistic' mobile middleware”, Computer Science Department,

UCLA, USA, 2005.

[4] L. Carvalho, R. Sofia. “User-provided Networks: Relaying vs. Ad-hoc Routing”, MSc thesis,

Universidade Porto/INESC Porto, 2009.

[5] C. E. Perkins, E. M. Belding-Royer, and S. Das. “Ad-hoc On-Demand Distance Vector

(AODV) Routing”. IETF Standard RFC 3561, July 2003.

[6] C. E. Perkins and E. M. Royer. “The Ad-hoc On-Demand Distance Vector Protocol”. In C.

E. Perkins, editor, Ad-hoc Networking, pages 173–219. Addison-Wesley, 2000.

[7] Uppsala University CoRe Group. “Aodv-uu”. Dec. 2007 [Online]. Available:

http://core.it.uu.se/core/index.php/AODV-UU. [Accessed: Aug. 2010].

[8] H. Lundgren, E. Nordstr m, and C. Tschudin. “Coping with Communication Gray Zones”. In

IEEE 802.11b based Ad-hoc Networks. Technical Report 2002-022, Uppsala University

Department of Information Technology, June 2002.

[9] OLSRD Project. Olsr daemon. [Online] Available: http://www.olsr.org. [Accessed: Aug.

2010].

[10] Chandrasekhar and J. Andrews, “Femtocell Networks: A Survey”, IEEE Communications

Magazine, Vol. 46, no. 9, pp 59 – 67, 2008.

[11] C. E. Palazzi, G. Pau, M. Roccetti, M. Gerla, “In-Home Online Entertainment: Analyzing the

Impact of the Wireless MAC-Transport Protocols Interference”, IEEE

WIRELESSCOM2005, USA, June 2005.

[12] C. E. Palazzi, S. Ferretti, M. Roccetti, G. Pau, M. Gerla, “What's in that Magic Box? The

Home Entertainment Center's Special Protocol Potion, Revealed”, IEEE Transactions on

Consumer Electronics, vol. 52, no. 4, pp. 1280-1288, November 2006.

[13] C. E. Palazzi, N. Stievano, M. Roccetti, “A Smart Access Point Solution for Heterogeneous

Flows”, Universitá di Padova, Italy 2009.

http://core.it.uu.se/AdHoc/AodvUUImpl
http://www.olsr.org/

73

[14] S. Charoenpanyasak and B. Paillassa, “SCTP multihoming with Cross Layer Interface in

Ad-hoc Multihomed Networks”, Third IEEE International Conference on Wireless and

Mobile Computing, Networking and Communications, France 2007.

[15] Y. Choi, B. Kim, S. Kim, M. In, and S. Lee, “A Multihoming Mechanism to Support Network

Mobility in Next Generation Networks”, IEEE 2006.

[16] Liu and A. Goldsmith, “Load-balancing and Switch Scheduling”, IEEE 2005.

[17] N. Spring, R. Mahajan and D. Wetherall, "Measuring ISP topologies with rocketfuel". In

Proceedings ACM SIGCOMM, Philadelphia, August 2002.

[18] Habib, N. Christin and J. Chuang, “On the Feasibility of Switching ISPs in Residential

Multihoming”, Carnegie Mellon University, California, 2007.

[19] T. V. Eicken and W. Vogels, “Evolution of the Virtual Interface Architecture”, USA, 1998.

[20] Z. Li, L. Fu, Ke Xu, Z. Shi and J. Wu, “Smooth Handoff Based on Virtual Interface in

Wireless Network”. In Wireless and Mobile Communications, ICWMC '06. International

Conference, Bucharest, July 2006.

[21] C. Tsao and R. Sivakumar, “On Effectively Exploiting Multiple Wireless Interfaces in Mobile

Hosts”, Georgia Institute of Technology, December 2009.

[22] Netfilter - Firewalling, NAT and packet mangling for Linux [Online] Available:

http://www.netfilter.org/ [Accessed: Aug. 2010].

[23] H.-Y. Hsieh and R. Sivakumar. “A transport layer approach for achieving aggregate

bandwidths on multi-homed mobile hosts”. In MobiCom '02 Proceedings of the 8th annual

international conference on Mobile computing and networking, Atlanta, September 2002.

[24] K.-H. Kim, Y. Zhu, R. Sivakumar, and H.Y. Hsieh, “A receiver-centric transport protocol for

mobile hosts with heterogeneous wireless interfaces”. Wireless Networks, 2005.

[25] L. Magalhaes and R. Kravets, “Transport level mechanisms for bandwidth aggregation on

mobile hosts”. In Proceedings of INCP, November 2001.

[26] Bluetooth, Bluetooth Network Encapsulation Protocol (BNEP) Specification, June 2001.

[27] Media Access Control (MAC) Bridges, June 2004,

[28] P. Stuedi and G. Alonso, “Transparent Heterogeneous Mobile Ad-Hoc Networks”. In

Proceedings of the Second Annual International Conference on Mobile and Ubiquitous

Systems: Networking and Services (MobiQuitous’05), San Diego, USA, July 2005.

[29] James T. Yu, “Performance Evaluation of Linux Bridge”, DePaul University, 2004.

[30] IEEE Computer Society. IEEE 802.11 Standard, IEEE Standard For Information

Technology, 1999.

[31] The Netfilter project team, “Linux Netfilter/Iptables frameworks”, Nov 1999. [Online].

Available: http://www.netfilter.org/. [Accessed: Aug. 2010].

[32] S. Graf, “Implementing a virtual network interface for heterogeneous mobile ad-hoc

networks (802.11 and Bluetooth)”, Swiss Federal Institute of Technology, Zurich, August

2006.

http://www.netfilter.org/

74

[33] J. Mota, A. Arsénio and R. Sofia, “Combining Heterogeneous Access Networks with Ad-

Hoc Networks for Cost-Effective Connectivity”. In API Review 2010, 1º volume, Edições

Lusófonas, February 2011.

[34] Linux Diagnostic Tools – System Utilities based on Sysfs. [Online] Available: http://linux-

diag.sourceforge.net/Sysfsutils.html. [Accessed: June 2010].

[35] Mirzaie, S. Elyato, A.K. Sarram, M.A., “Preventing of SYN Flood Attack with Iptables

Firewall”. In Communication Software and Networks, 2010. ICCSN '10. Second

International Conference, Singapore, February 2010.

[36] P. Karn and C. Partridge. “Improving round-trip time estimates in reliable transport

protocols”. In Proceedings of the SIGCOMM ’87 Conference, Stowe, Vermont, August

1987.

[37] V. Jacobson. “Congestion avoidance and control”. In Proceedings of the SIGCOMM ’88

Conference, Stanford, California, August 1988.

[38] J. Cano and P. Manzoni. “A Performance Comparison of Energy Consumption for Mobile

Ad Hoc Network Routing Protocols”, IEEE. Valencia, 2000.

[39] Alessandro Corbet and Greg Kroah-Hartman. “Linux Device Drivers”. O‟Reilly Media, 3rd

edition, 2005.

[40] Cross-Referencing Linux. Lxr. [Online] Available: http://lxr.linux.no. [Accessed: Aug. 2010].

[41] Free Software Foundation. Gnu general public license. [Online] Available:

http://www.gnu.org/licenses/gpl.html. [Accessed: Aug. 2010].

[42] Linux Diagnostic Tools. sysfsutils. [Online] Available: http://linux-

diag.sourceforge.net/Sysfsutils.html [Accessed: Aug. 2010].

[43] Uppsala University CoRe Group. Aodv-uu. [Online] Available:

http://core.it.uu.se/AdHoc/AodvUUImpl. [Accessed: Aug. 2010].

[44] IEEE Std. 802.11, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications,” 1999.

[45] IEEE Std. 802.11e, “Wireless LAN medium access control (MAC) and Physical Layer

(PHY) Specifications: medium access control (MAC) enhancement for quality of service

(QoS),” 2002.

[46] IEEE Std. 802.11b, “Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications: Higher-speed Physical Layer Extension in the 2.4 GHz Band,” 2001.

[47] IEEE Std. 802.11g, “Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications: Further Higher-Speed Physical Layer Extension in the 2.4 GHz

Band,” 2003.

[48] K. Medepalli, “Voice capacity of IEEE 802.11b, 802.11a, and 802.11g wireless. LANs”. In

Proc. IEEE Globecom, pp.1549–1553, 2004.

[49] Hewlett-Packard, Understanding Bluetooth™, January 2002.

http://lxr.linux.no/
http://www.gnu.org/licenses/gpl.html

75

Annex I – Wi-Fi and Bluetooth

IEEE 802.11 – Wi-Fi

Since its entrance into the mainstream of networking technology, Wi-Fi has mostly been

used as a replacement and augmentation for wired local area networks. Wi-Fi is well-suited for

applications requiring high-volume data transfer and distances below 10 meters.

WLANs have been, through the last decade, deployed as an extension of other access

technologies in a way to expand the reach of Internet broadband access and hence to facilitate

the penetration of Voice over IP (VoIP) and other data services. WLANs as complementary

networks normally follow an infrastructure mode of operation, where a central controller - the

Access Point (AP) / meddles and controls communication between any 2 elements.

More recently, there has been a surge of WLANs operating in mesh (ad-hoc mode), that is,

in a completely decentralized way. This is due to the emergence of soft-radio and also of open

distribution operating systems contemplating low-cost APs.

In both situations, the widespread deployment of WLANs is underpinned by the two most

popular variants of IEEE 802.11 standards, 802.11b and 802.11g.

IEEE has specified a set of standards as the 802.11 family for WLANs. The IEEE 802.11

specifications define a single Medium Access Control (MAC) layer [44][45] along with multiple

physical layers [44][46][47]. Distributed Coordination Function (DCF) is the fundamental MAC

technique that employs a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

distributed algorithm and an optional virtual carrier sense using Request To Send (RTS) and

Clear To Send (CTS) control frames. The original IEEE 802.11 standard [44] specifies data

rates of 1 Mb/s and 2 Mb/s, and defines Direct Sequence Spread Spectrum (DSSS) - based

physical layer that operates at the 2.4 GHz ISM band. The original 802.11 was rapidly

supplemented by IEEE 802.11b [46], which is specified to support higher data rates up to 11

Mb/s at 2.4 GHz using DSSS with complementary code keying (CCK) modulation.

IEEE 802.11g further extends 802.11b to support the data rates up to 54Mb/s at 2.4GHz.

The higher data rate in 802.11g is enabled by using Orthogonal Frequency Division Multiplexing

(OFDM) modulation as specified in the so-called Extended Rate Physicals (ERPs) physical

layer.

Along with the gradual deployment of WLANs, the involved Wi-Fi products are delivered

under different versions of 802.11 standards. Thus, IEEE 802.11b and IEEE 802.11g devices

unavoidably co-exist in common coverage area. In this mixed networking environment, the

legacy 802.11b devices cannot detect the ERP-OFDM signals sent from 802.11g devices;

76

consequently they cannot cause the Clear Channel Assessment (CCA) function within physical

layer to indicate the channel busy and refrain from channel access as specified in CSMA/CA.

This inability of legacy 802.11b devices leads to frame collisions in the channel access between

802.11b and 802.11g devices. To deal with this issue, the 802.11g defines a protection

mechanism based on the channel reservation for the ERP-OFDM transmissions. To ensure that

the reserved channel status is understandable by the mixed devices, extra frames are

introduced in the protection mechanism. Those frames have to be sent with NonERP

modulation at a low rate (typically 2 Mb/s) for them to be understood by all stations.

One option of extra frames is the RTS/CTS frames which are originally designed to reduce

frame collisions caused by hidden terminals. Any device (other than sender and intended

receiver) receiving the RTS or CTS frames should refrain from sending data by setting its

network allocation vector (NAV) for a given time period indicated in the Duration field of RTS

and CTS frames. The other option of extra frames is CTS-to-elf frames whose source address

and destination address are identical. The 802.11g sender transmits a CTS-to-self frame to

inform all the neighbouring 802.11g and 802.11b devices to update NAV according to the

Duration field of the CTS-to-self frame. Obviously, extra frames (RTS, CTS, and CTS-to-self)

used for ensuring interoperability are viewed as overhead for system performance because they

reduce the available medium resource for data delivery.

Specifically, when voice traffic is provisioned over homogeneous 802.11 WLANs (802.11b

only WLAN or 802.11g only WLAN), exchange of RTS and CTS frames is typically turned off

because a VoIP packet size (200 bytes in G.711) is usually less than a pre-defined triggering

threshold (maximum is 2347). In the mixed 802.11b and 802.11g WLAN, either exchange of

RTS/CTS frames or sending CTS-to-self frames needs to be initiated for performing the

protection mechanism.

CTS-to-self protection mechanism is more efficient than RTS/CTS protection mechanism in

clear channel conditions (no hidden terminals). Usually, there are few hidden terminals in the

indoor voice over WLAN (VoWLAN) services, hence CTS-to-self protection mechanism is

typically utilized [48].

Nevertheless, the voice performance degrades significantly in the mixed 802.11b and

802.11g WLAN with either protection mechanism. Compared to the 802.11g only WLAN, it is

reported in [47] that the voice capacity in the mixed WLAN drops more than 70% and 50% with

RTS/CTS protection mechanism and CTS-to-self protection mechanism, respectively.

77

IEEE 802.15.x – Bluetooth

Bluetooth is defined as a wireless technology that provides short-range communications

intended to replace the cables connecting portable and/or fixed devices while maintaining high

levels of security. There are three key features of Bluetooth; robustness, low power, and low

cost. The Bluetooth standard provides a uniform structure enabling a wide variety of devices to

seamlessly, and wirelessly, connect and communication with each other. Bluetooth devices

connect and communicate via RF link through short-range piconets and have the ability to

connect with up to seven devices per piconet. Each of these devices can also be

simultaneously connected to other piconets.

The piconet itself is established dynamically and automatically as Bluetooth enables devices

enter and leave the range in which its radio operates. The major pro of Bluetooth is the ability to

be full duplex and handle both data and voice transmission simultaneously. The differentiation of

Bluetooth from other wireless standards such as Wi-fi is that the Bluetooth standard gives both

link layer and application layer definitions which support data and voice applications.

Bluetooth comes in two core versions; Version 2.0 + Enhanced Data Rate and Version 1.2.

The primary differences being Bluetooth 2.0 has a data rate of 3 Mega bits per second whereas

Version 1.2 has only a 1 Mega bit per second data rate. Both are equipped with extended

Synchronous Connections (eSCO), which improves voice quality of audio links by allowing

retransmissions of corrupted packets.

Bluetooth technology operates in the unlicensed industrial, scientific and medical (ISM) band

at 2.4 to 2.485 GHz, using a spread spectrum, frequency hopping, full-duplex signal at a

nominal rate of 1600 hops/sec. Bluetooth is modulated using adaptive frequency hopping

(AFH). This modulation has the capability to reduce interference between wireless

technologies sharing the ISM band. It does this by having the ability to detect other devices

using the ISM band and use only frequencies that are free. The signal itself hops between

ranges of 79 frequencies at 1 Megahertz intervals to minimize interference [49].

The devices themselves are categorized into range ability. There are three classes of

devices each covering a select range. Class 1 devices are mostly used in industrial cases and

have a range of 100 to 300 meters. These devices take more power than the standard devices

you and I are accustomed to in our daily routine and therefore are a bit more expensive. Class

2 devices are most commonly found in mobile devices and the most commonly used. Items

such as cell phones and printers are Class 2 devices and have a range of 10 to 30 feet and use

only 2.5 milli-Watts of power. Finally, Class 3 devices have the shortest range of up to 1 meter

and include devices such as keyboards and a computer mouse. Class three devices therefore

require the least amount of power and are in general the lease expensive.

78

The Bluetooth specification defines two links types, Asynchronous Connectionless (ACL)

and Synchronous Connection Oriented (SCO). Different link types can be used by different

master slave pairs in the same piconet. The SCO links are chiefly used for voice traffic and their

data rate is 64 Kbps. These are characterized by a periodic single slot packet assignment. For

data traffic and support broadcast messages ACL links are mainly used. ACL link types are

used by Multislot packets and can attain maximum data rate of 721 Kbps in one direction and

57.6 Kbps in other direction. These data rates can be achieved if no error correction is used.

For device communication the Bluetooth specification uses Time Division Duplexing and

Time Division Multiple Access, being 625 μ sec the length of single time slot [49].

There is a preset packet format for Bluetooth. Firstly a 72 bit access code that holds the

piconet address. The 54 bit header following the access code contains retransmission, flow

control and error correction information. The payload field comes in the last of packet and may

be of up to 2745 bits.

79

Annex II – AODV and OLSR

AODV - Ad-hoc On demand Distance Vector routing protocol

The Ad-hoc On demand Distance Vector (AODV) [5][6] is a routing algorithm for MANET, so

that routes between nodes are only built as soon as, and maintained as long as, they are

needed by a source node. Figure 6.1 shows the message exchanges of the AODV protocol.

Hello messages may be used to detect and monitor links to neighbors. If Hello messages are

used, each active node periodically broadcasts a Hello message that all its neighbors receive.

Because nodes periodically send Hello messages, if a node fails to receive several Hello

messages from a neighbor, a link break is detected.

Figure 6.1: AODV protocol messaging.

When a source has data to transmit to an unknown destination, it broadcasts a Route

Request (RREQ) for that destination. At each intermediate node, when a RREQ is received a

route to the source is created. If the receiving node has not received this RREQ before, and it is

not the destination and does not have a current route to the destination, it re-broadcasts the

RREQ. If the receiving node is the destination or has a current route to the destination, it

generates a Route Reply (RREP). The RREP is unicast in a hop-by- hop fashion to the source.

As the RREP propagates, each intermediate node creates a route to the destination. When the

source receives the RREP, it records the route to the destination and can begin sending data. If

multiple RREPs are received by the source, the route with the shortest hop count is chosen.

As data flows from the source to the destination, each node along the route updates the

timers associated with the routes to the source and destination, maintaining the routes in the

routing table. If a route is not used for some period of time, a node cannot be sure whether the

route is still valid; consequently, the node removes the route from its routing table.

80

If data is flowing and a link break is detected, a Route Error (RERR) is sent to the source of

the data in a hop-by- hop fashion. As the RERR propagates towards the source, each

intermediate node invalidates routes to any unreachable destinations. When the source of the

data receives the RERR, it invalidates the route and re-initiates route discovery if necessary.

An implementation of AODV for Linux systems named AODV-UU is provided by the Uppsala

University [7]. It consists of a kernel module and a userspace daemon. Although still

experimental, AODV performs well in a Linux MANET.

AODV-UU uses Netfilter to capture the packets. The main protocol logic resides in a

userspace daemon. The authors have also added a number of supplemental features, not part

of the AODV draft, to increase the performance of Hello messages [8] (e.g., unidirectional link

support and a signal quality threshold for received packets). In addition, AODV-UU also includes

Internet gatewaying and multiple interface support. Since AODV-UU is well documented and

able to run in simulation, a number of patches are available (e.g., multicast and subnetting) to

further extend its functionality.

OLSR - Optimized Link State Routing protocol

The Optimized Link State Routing protocol is a proactive, table-driven routing algorithm for

MANET. An implementation of the OLSR protocol is provided by [9]. OLSR runs as a standalone

server process and is platform independent. It is supposed to work on Linux, FreeBSD,

NetBSD, OS X and even on Windows. All operations are performed in userspace. Explicit

interaction with the kernel is only necessary to manipulate the routing table.

OLSR minimizes the overhead from flooding of control traffic by using only selected nodes,

called “multipoint relays” (MPRs), to retransmit control messages. This technique significantly

reduces the number of retransmissions required to flood a message to all nodes in the network.

Secondly, OLSR requires only partial link state to be flooded in order to provide shortest path

routes. The minimal set of link state information required is, that all nodes, selected as MPRs,

must declare the links to their MPR selectors. Additional topological information, if present,

may be utilized e.g., for redundancy purposes.

OLSR may optimize the reactivity to topological changes by reducing the maximum time

interval for periodic control message transmission. Furthermore, as OLSR continuously

maintains routes to all destinations in the network, the protocol is beneficial for traffic patterns

where a large subset of nodes are communicating with another large subset of nodes, and

where the [source, destination] pairs are changing over time. The protocol is particularly suited

for large and dense networks, as the optimization done using MPRs works well in this context.

The larger and more dense a network, the more optimization can be achieved as compared to

81

the classic link state algorithm.

OLSR is designed to work in a completely distributed manner and does not depend on any

central entity. The protocol does not require reliable transmission of control messages: each

node sends control messages periodically, and can therefore sustain a reasonable loss for a

number of such messages. Such losses occur frequently in radio networks due to collisions or

other transmission problems.

Also, OLSR does not require the sequencial delivery of messages. Each control message

contains a sequence number which is incremented for each message. Thus the recipient of a

control message can, if required, easily identify which information is more recent, even if

messages have been re-ordered while in transmission. Furthermore, OLSR provides support for

protocol extensions such as sleep mode operation, multicast-routing etc. Such extensions may

be introduced as additions to the protocol without breaking backwards compatibility with earlier

versions. OLSR does not require any changes to the format of IP packets. Thus any existing

IP stack can be used as is: the protocol only interacts with routing table management.

In Figure 6.2, node N2, selected a few neighbor nodes in the network. These nodes will send

node N2 packets. These selected nodes, N1 and N6 are called Multipoint Relays of node N2.

Node N2 selects its MPR to cover all the nodes that are exactly two hops away from it. In our

example: N7, N8, N9 and N4. A node which is not a Multipoint Relay can read the packet sent

from N2 but cannot forward it.

Figure 6.2: OLSR route selection.

82

Annex III –Kernel Programming

Linux kernel aspects

This annex tries to introduce a few of the basic concepts of Linux kernel programming. The

reader is assumed to be familiar with using the GNU toolchain, namely gcc and make, further

should he know how to build a customized kernel.

 It is of course not possible go give an elaborate introduction to kernel programming in such

a thesis. This introduction is supposed to teach the reader the very basics of Linux kernel

programming. It shows the major aspects related to the implementation of the virtual network

interface, namely to get a module built and have it registered with the central facilities of the

Linux kernel. A more in-depth look at Linux kernel programming is given in [39].

 Any structure or function which is referenced in the following can be looked up at the Cross

Referencing Linux [40] project. They provide a search engine and a hyper-linked view of the

Linux source code.

The Linux kernel

The Linux kernel is a so-called monolithic kernel, i.e. all operating system services such as

memory and process management, hardware drivers, networking and concurrency are

implemented as a whole and run in supervisor mode sharing the same address space. Linux

provides the ability to load so-called modules at run-time. These become part of the kernel as if

they were linked-in.

 Most device drivers are implemented as modules, although many of them can be linked into

the kernel at compile-time. The decision whether to link a driver into the kernel or to have it as a

module is based on the actual needs. The modern way is to have all drivers which are not

needed at an early phase of the boot process loaded as modules when needed.

The Hello World Module

Following the tradition of most programming related texts the first example will print "Hello,

world". This example uses the logging facility of the kernel. The output is visible either on the

console, in the dmesg output or in the syslog, i.e. usually this is /var/log/messages.

 Listing 1 shows the implementation of this simple module. Even in this simplistic example a

peculiarity of the Linux kernel shows up: the heavy usage of preprocessor macros. The first is

83

found after the “includes”. MODULE_LICENSE declares the license under which a module is

distributed. As the Linux kernel itself is distributed only under GPL [41] which does not allow

linking proprietary objects to GPL-objects, it is quite unavoidable to choose GPL as the module‟s

license. Otherwise many kernel features are hidden from the module, which is very restricting.

 The next macro is encountered in line 8. KERN_ALERT, KERN_DEBUG, KERN_INFO and

others define the class of a log message which is to be printed to the kernel log ring-buffer.

These macros expand to strings which prefix the actual message.

 The last two lines of this example tell the kernel how to load and unload this module, again

these are macros.

 Listing 2 shows the corresponding makefile and listing 3 how the module is loaded into the

kernel. Looking at the output of the dmesg program should reveal the two strings.

01 #include <linux/module.h> /* Needed by all modules */

02 #include <linux/kernel.h> /* Needed by all modules */

03 #include <linux/init.h>

04 MODULE_LICENSE("GPL");

05

06 static int hello_init(void)

07 {

08 printk(KERN_ALERT "Hello, world\n");

09 return 0;

10 }

11

12 static int hello_exit(void)

13 {

14 printk(KERN_ALERT "Bye, world\n");

15 }

16

17 module_init(hello_init);

18 module_exit(hello_exit);

Listing 1: A minimal kernel module.

01 ifneq (($KERNELRELEASE),)

02 obj-m := hello.o

03 else

04 KERNELDIR ?= /lib/modules/$(shell uname -r)/build

05 PWD := $(shell pwd)

06

07 default:

08 $(MAKE) -C $(KERNELDIR) M=$(PWD) modules

09 endif

Listing 2: The Makefile

01 make

02 insmod hello.ko

03 rmmod hello

Listing 3: Building and loading/unloading the module.

84

The build system

The previous section showed how an external module can be built. This build process

already involves the kernel build system. If a module is to be distributed as part of the kernel, its

interaction goes further. The kernel build system not only comprehends compiling and linking

but also the configuration. The user usually configures the kernel options through make config

or its derivatives make menuconfig or make xconfig. These tools allow the user to select which

modules should make part of the kernel and how they will be linked to it statically or as a

module. A number of other parameters can be adjusted during this process. To make a module

appear in these tools, it obviously needs to announce its presence.

Becoming part of the kernel

To let the module appear in the network section of the kernel configuration, its source has to

be moved to net/hello/ in the kernel source tree. The file net/Kconfig has to contain a line source

net/hello/Kconfig. In the hello directory, a new file Kconfig has to be created according to listing

4. The makefile has to be adapted to its new environment as the module has to be compiled if

and only if it is enabled in the configuration.

01 config HELLO

02 tristate "Hello world module"

03 ---help---

04 To compile this code as a module,

05 choose M here: the module

06 will be called hello.

07

08 If unsure, say N.

Listing 4: Config file for the kernel build system.

Listing 5 shows how it might look like. Apart from some general conventions for in-kernel

makefiles, the main difference to the simple one in the previous section is in line 15 where the

content of the variable CONFIG_HELLO is evaluated. This variable is set by the configuration

system of the kernel and refers to the config HELLO directive in listing 4.

01 DEBUG = y

02

03 ifeq ($(DEBUG),y)

04 DEBFLAGS = -O -g -DHELLO_DEBUG

05 else

06 DEBFLAGS = -O2

07 endif

08

09 CFLAGS += $(DEBFLAGS) -I$(LDDINC)

10

11 TARGET = hello

12

13 ifneq ($(KERNELRELEASE),)

85

14

15 obj-$(CONFIG_HELLO) := hello.o

16

17 #hello-objs := #no other objects are linked to hello.o

18

19 else

20

21 KERNELDIR ?= /lib/modules/$(shell uname -r)/build

22 PWD := $(shell pwd)

23

24 modules:

25 $(MAKE) -C $(KERNELDIR) M=$(PWD) LDDINC=$(PWD) modules

26

27 endif

28

29

30 install:

31 install -d $(INSTALLDIR)

32 install -c $(TARGET).o $(INSTALLDIR)

33

34 clean:

35 rm -rf *.o *~ core .depend *.ko

36 rm -rf *.mod.c .tmp_versions .*.cmd

37

38

39 depend .depend dep:

40 $(CC) $(CFLAGS) -M *.c > .depend

41

42 ifeq (.depend,$(wildcard .depend))

43 include .depend

44 endif

Listing 5: Makefile using the kernel build system.

The Linux Device Model

Linux 2.6 introduces a unified device model, a single data structure containing all the

information on how the system is put together. Advanced features like hot-plugging devices on

USB and PCI or power management demanded for a more sophisticated design than the one in

Linux 2.4.

86

Figure 6.3: A look into the device model.

The kernel programmer‟s work became easier because all subsystems work similarly while

at the same time the registration of a driver and its devices to the system may have become

more difficult. Certainly, the new device model is a giant step in the development of the Linux

kernel and shows that Linux 2.6 is a modern and well designed operating system. The device

model is mainly split into buses, classes and devices. A small piece of it is shown in figure 6.3

which is adapted from [39].

A bus represents the way a device is connected to the system, whereas classes group

devices according to their function. Two network devices, connected to the PCI bus and the

USB bus, respectively, appear in the same class as they provide the same function.

Each object in the device model (e.g. device, driver, bus) is represented by a kobject. The

kobject’s tasks include reference counting, SysFS representation, hotplug event handling. It

holds the device module structure together by having pointers to the parent, a kset, a list

containing its children. It helps distinguishing the different types of kobjects with a pointer to a

kobj_type. The kobject structure and its primary helpers kobj_type and kset are defined in

“include/linux/kobject.h”. An excerpt of this file is given in listing 6.

Listing 7 shows how a kobject is normally used. It is a member of the struct which wants to

use kobject’s facilities. This technique is encountered throughout the kernel in many places, e.g.

the linked list implementation (cf. listing 6). At this point it might be important to know that the

basic structure device of which any device in the kernel has an instance normally is not used

87

solely, instead each subsystem defines a container for this structure. Another interesting point is

to see that the structure class_device contains a kobject and the structure device contains

another one. The usefulness of this will be seen in the section covering SystemFS.

01 struct kobj_type {

02 void (*release)(struct kobject *);

03 struct sysfs_ops * sysfs_ops;

04 struct attribute ** default_attrs;

05 };

06 struct kset {

07 struct subsystem * subsys;

08 struct kobj_type * ktype;

09 struct list_head list;

10 struct kobject kobj;

11 struct kset_hotplug_ops * hotplug_ops;

12 };

13 struct kobject {

14 char * k_name;

15 char name[KOBJ_NAME_LEN];

16 struct kref kref;

17 struct list_head entry;

18 struct kobject * parent;

19 struct kset * kset;

20 struct kobj_type * ktype;

21 struct dentry * dentry;

22 };

Listing 6: kobject structures.

01 struct class_device {

02 struct list_head node;

03 struct kobject kobj;

04 struct class * class;

05 struct device * dev;

06 void * class_data;

07 char class_id[BUS_ID_SIZE];

08 };

Listing 7: A kobject consumer.

Registering with the device model

Devices in Linux 2.6 normally will not be created out of the blue. The need for a device

structure or even the whole driver arises when a device is detected through hotplug events or

probing on the bus. Only special devices like the pure virtual network interface have to be

initialized and registered with their respective subsystems manually. Another exception are

busses which define on the one hand a bus_type and on the other hand a device.

 Busses like the platform bus which do not have a physical representation (e.g. the USB has

a representation in form of a UHCI controller) have to initialize their device structures

themselves.

 Network devices register with the network system through register_netdevice which also

88

includes a registration with the class net. It is important to distinguish between the different

institutions to which a device might register and to know the various structures needed to do

this. Table 6.1 tries to give an overview of the major entry points to the device model. It shows

the relationship of subsystems and their structures and registration functions.

Part of The Model Structure Function

class struct class_device class_device_register

network subsystem struct net_device register_netdevice

bus struct device device_register

Table 6.1: Registration facilities of the device model.

System FS

The user interface to the new device model is a filesystem which is usually mounted in /sys.

It lists all devices, drivers, busses and their relations. All of them can export attributes which

then are listed as files. Links to other parts of the system are implemented as directories, i.e. the

pci bus contains directories representing the actual busses (pci controller) which again contain

links to the connected devices.

 Device directories contain links to their drivers. Via this filesystem the user or system utilities

can access and modify the parameters of devices and drivers. The user can manipulate it using

echo, cat and similar tools. The library libvi and the management tool victl make use of the files

in the sys filesystem. Looking at Listing 8 one might be able to detect the correlation of the

SysFS tree and the data structure showed in figure 6.3. As attributes are exported to SysFS as

files, one has to define functions for read and write operations. The kernel provides macros and

a convenient API to decorate a kobject1 with custom attributes. A directory containing several

attributes is attached to an existing kobject as shown in listing 9. The function add_myattrs is

usually called upon initialization of the class_device structure. The functions providing the read

and write operations on the SysFS files should return the number of bytes read or written. The

network devices, which are covered later, contain a class_device structure. Considering the

device eth0 the new attributes would appear in /sys/class/net/eth0/myattrs/. The class_device

also holds a link to a device structure which essentially is the the basic representation of any

1 A kobject is an object of type struct kobject. Kobjects have a name and a reference count. A kobject also has a parent pointer

(allowing kobjects to be arranged into hierarchies), a specific type, and, perhaps, a representation in the sysfs virtual filesystem.

89

device. This structure maintains all the connections to busses, drivers and some very specific

information on power management, DMA and other things we usually do not want to get in

touch with. This example shows how a class_device can be extended by attributes. This is what

we usually want; as there lies the information a user/administrator has to deal with. The

attributes exported by device cover mostly the mentioned low-level details which are usually

read-only.

01 /sys

02 |-- block

03 |-- ...

04 |-- bus

05 | |-- ...

06 | |-- pci

07 | | |-- devices

08 | | | |-- ...

09 | | | |-- 0000:00:1d.1 -> ...

10 | | | |-- ...

11 | | `-- drivers

12 | | |-- Intel ICH

13 | | | |-- 0000:00:1f.5 -> ...

14 | | | |-- ...

15 | | |-- ...

16 | | `-- uhci_hcd

17 | | |-- 0000:00:1d.0 -> ...

18 | | |-- 0000:00:1d.1 -> ...

19 | | |-- ...

20 | |-- ...

21 | `-- usb

22 | |-- devices

23 | `-- drivers

24 |-- class

25 | |-- input

26 | | |-- input0

27 | | | |-- device -> ...

28 | | | |-- ...

29 |-- devices

30 |-- firmware

31 |-- kernel

32 |-- module

33 `-- power

Listing 8: Look into SysFS.

01 static ssize_t store_attr_a(struct class_device *cd,

02 const char *buf,

03 size_t len)

04 {...}

05

06 static ssize_t store_attr_b(...){}

07 static ssize_t store_attr_c(...){}

08

09 static ssize_t show_attr_c(struct class_device *cd,

10 const char *buf,

11 size_t len)

12 {...}

13

14 static CLASS_DEVICE_ATTR(attr_a, S_IWUSR,

15 NULL, store_attr_a);

16 static CLASS_DEVICE_ATTR(add, S_IWUSR,

17 NULL, store_attr_b);

18 static CLASS_DEVICE_ATTR(maxdiff, S_IWUSR | S_IRUGO,

19 show_attr_c, store_attr_c);

90

20

21 static struct attribute *myattrs[] = {

22 &class_device_attr_attr_a.attr,

23 &class_device_attr_attr_b.attr,

24 &class_device_attr_attr_c.attr,

25 NULL

26 };

27

28 static struct attribute_group mygroup = {

29 .name = "myattrs",

30 .attrs = myattrs,

31 };

32

33 int add_myattrs(struct class_device *dev)

34 {

35 struct kobject *kobj = &dev.kobj;

36 int err;

37 err = sysfs_create_group(kobj, &mygroup);

38 if(err)

39 {

40 pr_info(%s can't create group %s\n",

41 __FUNCTION__, mygroup.name);

42

43 }

44 return err;

45 }

Listing 9: Adding a group of attributes.

The Network subsystem

The Linux network subsystem breaks with the UNIX philosophy of everything being a file.

Contrary to block and char devices, network devices do not have an entry point in the /dev

directory. There is usually no reason to perform read or write operations on a network device.

These operations are performed on a socket, of which many hundreds can be multiplexed to a

network interface. A network interface has to provide means for transmitting and receiving

packets. The network subsystem is completely independent of protocols (either hardware or

software) albeit providing major support for ethernet devices and the TCP/IP protocol suite.

Implementing a device similar to an ethernet device is very tempting, so that even the plip1

device, which is a network device that links two computers via their parallel ports, resembles an

ethernet device in many ways.

Initialization

A network device is created using the function alloc_netdev and registered with the network

subsystem using register_netdev. The usage of these functions is demonstrated in Listing 11.

The function mydev_create carries out all steps necessary to create a new network device. The

1 The Parallel Line Internet Protocol (PLIP) is an encapsulation of the Internet Protocol designed to work over a

personal computer parallel port via a null-printer cable, sometimes called a “laplink” cable.

91

structure type mydev_private is the place where device specific data is stored. The function

alloc_netdev allocates the space for this private data, too. It is in fact appended to the structure

net_device. The pointer priv links to the start of the private data. Listing 11 also shows how the

class_device structure discussed earlier is used in a specific subsystem.

01 struct mydev_private{

02 /* private fields */

03 };

04

05 void mydev_setup(struct net_device *dev)

06 {

07 /* custom initialization code */

08 }

09

10 struct net_device *mydev_create()

11 {

12 mydev = alloc_netdev(sizeof(struct mydev_private),

13 "mydev%d", mydev_setup);

14 if(mydev)

15 {

16 if(register_detdev(mydev))

17 {

18 /* error handling */

19 free_netdev(mydev);

20 }

21 }

22 else

23 {

24 /* error handling */

25 }

26 }

Listing 10: Initialization of a network device.

01 struct net_device *alloc_netdev(

02 int sizeof_priv,

03 const char *name,

04 void (*setup)(struct net_device *));

05 void free_netdev(struct net_device *dev);

06 int register_netdev(struct net_device *dev);

07 void unregister_netdev(struct net_device *dev);

08

09 struct net_device

10 {

11 ...

12 void *priv;

13 ...

14 struct class_device class_dev;

15 ...

16 }

Listing 11: Main network device infrastructure.

Default interface

The network subsystem requires a device to implement a set of default functions. During

initialization, the driver has to store the pointers to the implementing functions into the

appropriate fields of the net_device structure (cf. Listing 10). Not all of these functions have to

be implemented specifically, as the kernel includes some default implementations which are

enabled through netdev_alloc. A list of the most common candidates for custom implementation

is given in Listing 12.

92

01 int (*open)(struct net_device *dev);

02 int (*stop)(struct net_device *dev);

03 int (*hard_start_xmit) (struct sk_buff *skb, struct net_device *dev);

04 int (*set_mac_address)(struct net_device *dev, void *addr);

05 int (*do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);

06 int (*set_config)(struct net_device *dev, struct ifmap *map);

07 int (*change_mtu)(struct net_device *dev, int new_mtu);

08 void (*tx_timeout) (struct net_device *dev);

Listing 12: Network device interface service routines.

 open

This function is called as soon as ifconfig activates the device. Any resources should be
initialized at this point, i.e. in a physical device this includes IRQ, DMA, etc.

 stop

This is the opposite to open.

 hard_start_xmit

The actual workhorse of a network device which transmits packets. Will be covered in-
depth in the next section.

 set_mac_address

If a device is able to set its mac address, e.g. in a register of the chip on the adapter,
then this function would perform this low-level work. The default implementation just
sets the corresponding field net_device->dev_addr.

 do_ioctl

Only if the interface is desired to perform specific ioctl operations this field must be non-

null. The implementation of custom ioctl operations is not covered in this thesis1.

 change_mtu

If the MTU for this interface changes, this function is called.

 tx_timeout

If a packet transmission fails to be completed within reasonable time, this function is
supposed to handle the problem and to resume transmission.

1 With the introduction of sysfs the ioctl mechanism has become obsolete in most cases, since every new ioctl operation is like a

new system call. The kernel API therefore changes rapidly and becomes complex. Further, ioctl operations are assigned global

numbers which have to be coordinated to not overlap between different devices.

93

Packet transport

Packet transport can be split in two parts: sending and receiving. Sending is always initiated

by the network stack. The network interface gets the data to be sent via the hard_start_xmit

function mentioned in the previous section. Reception is usually due to an interrupt caused by a

packet coming over the wire and reaching the controller on the network adapter. Because of the

impossibility to deal with these device-specific topics, the device-independent structure sk_buff

which is central to packet transport will be explained.

The protocol-independency of the sk_buff structure in Listing 14 is clearly visible in the

excessive usage of unions. This structure perfectly fits the packet-oriented nature of most

modern network protocols. It integrates the header-data for three protocol-layers, the actual

payload and a lot of administrative information. The latter mostly relate to the packet filter

(Netfilter) and caching. The sk_buff system includes several functions to manipulate this non-

trivial structure. Listing 13 shows the signature of these functions.

01 struct sk_buff *skb_clone(struct sk_buff *skb, int priority);

02 struct sk_buff *alloc_skb(unsigned int size, int priority);

03 void skb_trim (struct sk_buff *skb, unsigned int len)

04 unsigned char *skb_pull (struct sk_buff *skb, unsigned int len);

05 unsigned char *skb_push (struct sk_buff *skb, unsigned int len);

06 unsigned char *skb_put (struct sk_buff *skb, unsigned int len);

Listing 13: sk_buff manipulation.

 skb_clone

Duplicates an sk_buff structure in its entirety

 alloc_skb

Allocates a sk_buff structure. This is mainly used in the receiving part of a network

driver.

 skb_pull

Removes data from the start of the buffer. This function returns a pointer to the next

data in the buffer. Subsequent calls to skb_push will overwrite the old data.

 skb_push

Adds data to the start of the buffer. A pointer to the new start is returned.

 skb_put

Adds data to the end of the buffer. A pointer to the start of the extra data is returned.

94

01 struct sk_buff {

02 struct sk_buff *next;

03 struct sk_buff *prev;

04 struct sk_buff_head *list;

05 struct sock *sk;

06 struct timeval stamp;

07 struct net_device *dev;

08 struct net_device *input_dev;

09 struct net_device *real_dev;

10

11 union {

12 struct tcphdr *th;

13 struct udphdr *uh;

14 struct icmphdr *icmph;

15 struct igmphdr *igmph;

16 struct iphdr *ipiph;

17 struct ipv6hdr *ipv6h;

18 unsigned char *raw;

19 } h;

20

21 union {

22 struct iphdr *iph;

23 struct ipv6hdr *ipv6h;

24 struct arphdr *arph;

25 unsigned char *raw;

26 } nh;

27

28 union {

29 unsigned char *raw;

30 } mac;

31 /* ... */

32 unsigned int len,

33 data_len,

34 mac_len,

35 csum;

36 unsigned char local_df,

37 cloned,

38 pkt_type,

39 ip_summed;

40 __u32 priority;

41 unsigned short protocol,

42 security;

43 /*

44 ... destination cache ...

45 ... NETFILTER ...

46 */

47 unsigned char *head,

48 *data,

49 *tail,

50 *end;

51 };

Listing 14: Excerpt of the sk_buff structure.

95

Annex IV – Installation Tutorial

Installation Tutorial

In this annex it is explained how to install and run the implemented module. For that is

necessary to meet the following series of requisites:

 Computer running Debian GNU/Linux operating system;

 Kernel version 2.6, or higher;

 The latest version of Sysfs installed;

 The package Bridge-utils installed.

Linux kernel

1. Download the source of the kernel version (must be at least version 2.6) from

www.kernel.org;

2. Extract the folder to the /usr/src directory;

3. Copy the config-linux.your.linux.version from /boot directory to /usr/src/linuxversion

4. Change the name of the config-linux.your.linux.version to “.config”;

5. Go to /usr/src/linuxversion and execute the following command: “make menuconfig” then

choose the option load an alternate version, press ok and then exit;

6. Copy the file socket.c to the /usr/src/linuxversion/net directory;

7. Copy the file dev.c to /usr/src/linuxversion/net/core (this step is not necessary with the

netfilter hooks version);

8. Copy the files netdevice.h and sockios.h to the /usr/src/linuxversion/include/linux directory;

9. Go to the /usr/src directory and execute the following commands:

a. make bzImage

b. make modules

c. make install

d. make modules_install

e. mkinitramfs –o /boot/initrd.img-$(uname -r) „kernel version‟ (Ex: mkinitramfs –o

/boot/initrd.img-$(uname -r) 2.6.31.14)

10. Add a line with the new kernel version to the /boot/brug/grub.cfg file;

96

menuentry "Ubuntu, Linux 2.6.31-14 for VI" {

 recordfail=1

 if [-n ${have_grubenv}]; then save_env recordfail; fi

set quiet=1

insmod ext2

set root=(hd0,4)

search --no-floppy --fs-uuid --set 5d7a1424-cf4e-4c2c-888f-7199a7e908c0

linux /boot/vmlinuz-2.6.31.14 root=UUID=5d7a1424-cf4e-4c2c-888f-7199a7e908c0 ro

quiet splash

initrd /boot/initrd.img-2.6.31-14

}

11. Reboot the computer and choose the new kernel version;

Routing protocols

1. Get the source distribution of AODV-UU [43];

2. Install according to the AODV-UU installation manual;

3. Get the source distribution of OLSRD [9];

4. Install according to the OLSRD installation manual.

Libsysfs

Install the development package of libsysfs for your distribution or get and install the source

distribution from [42].

Virtual interface

1. Unzip kmod.zip and in that directory execute the following commands:

i. Make;

ii. insmod vi.ko (to load the module).

2. Go the directory of the victl executable and run the following command: chmod a+x victl (to

give the needed permissions);

3. To run the virtual interface execute the command: ./victl;

4. Do debug eventual errors use the command: dmesg.

97

Usage

The victl is self-explanatory. The following is an example on how to add a virtual interface and

associate some existing network interfaces:

1. Add a virtual interface using victl addvi vi0;

2. Start the interface by ifconfig vi0 up;

3. Add an existing network interface to the virtual interface by victl addif vi0 eth1;

4. Set the priority by victl setportprio vi0 eth1 “priority”;

5. Add another existing interface by victl addif vi0 wlan0;

6. Set a MAC address for the virtual interface by ifconfig vi0 hw ether $MAC;

7. Set an IP address by ifconfig vi0 $IP or dhclient vi0.

98

Annex V – Testbed Configuration

File: /etc/config/network
config 'interface' 'loopback'

option 'ifname' 'lo'

option 'proto' 'static'

option 'ipaddr' '127.0.0.1'

option 'netmask' '255.0.0.0'

config 'interface' 'lan'

option 'type' 'bridge'

option 'proto' 'static'

option 'ipaddr' '192.168.2.1' #Each router has a different ip

option 'netmask' '255.255.255.0'

option 'ifname' 'eth0.0'

config 'interface' 'wan'

option 'ifname' 'eth0.1'

option 'proto' 'dhcp'

config 'interface' 'adhoc'

option 'ifname' 'ath0'

option 'proto' 'static'

option 'ipaddr' '192.168.0.1' #Each router has a different ip

option 'netmask' '255.255.255.0'

File: /etc/config/system
config system

option hostname APXX #XX is the number of each AP (e.g. 01, 02, 03)

option timezone UTC

config button

option button reset

option action released

option handler "logger reboot"

option min 0

option max 4

config button

option button reset

option action released

option handler "logger factory default"

option min 5

option max 30

File: /etc/config/wireless
onfig 'wifi-device' 'wifi0'

option 'type' 'atheros'

option 'disabled' '0'

option 'mode' '11a'

option 'agmode' '11bg'

option 'maxassoc' ''

option 'distance' ''

option 'diversity' '1'

option 'txantenna' '0'

99

option 'rxantenna' '0'

option 'antenna' ''

option 'channel' '07'

config 'wifi-iface'

option 'device' 'wifi0'

option 'network' 'adhoc'

option 'mode' 'ahdemo'

option 'encryption' 'none'

option 'bssid' '02:00:01:02:03:04'

option 'server' ''

option 'port' ''

option 'hidden' '0'

option 'isolate' '0'

option 'txpower' '18'

option 'bgscan' '0'

option 'frag' ''

option 'rts' ''

option 'wds' '0'

option 'key1' ''

option 'key2' ''

option 'key3' ''

option 'key4' ''

option '80211h' ''

option 'compression' ''

option 'bursting' ''

option 'ff' ''

option 'wmm' ''

option 'xr' ''

option 'ar' ''

option 'turbo' ''

option 'macpolicy' 'none'

option 'ssid' 'VirtualInterfaceTest'

100

Annex VI – Energy Consumption Script

#!/bin/sh

#power.sh

COUNTER=0

while [$COUNTER -lt 60]; do

awk 'NR==5{print >> /home/mota/Desktop/teste.txt}'

/proc/acpi/battery/BAT0/state

let COUNTER=COUNTER+1

echo $(date)

sleep 10

done

	1 Introduction
	1.1 Generic Applicability Scenarios
	1.2 Goals, Assumptions, and Expected Results

	2 State-of-the-Art
	2.1 Emerging Wireless Architectures and Technologies
	2.1.1 Short-range Wireless Technologies
	2.1.1.1 Bluetooth and Wi-Fi

	2.1.2 Wi-Fi Modes of Operation

	2.2 Empowering the end-user: Femtocells and Smart APs
	2.2.1 Femtocells
	2.2.2 Smart APs

	2.3 Dealing with Multiple Interfaces
	2.3.1 Multihoming
	2.3.2 Load-balancing
	2.3.3 Network Switching
	2.3.4 ISP Switching
	2.3.5 Aggregation: Interface virtualization
	2.3.5.1 Interface Virtualization
	2.3.5.2 Bluetooth Network Encapsulation Protocol – BNEP
	2.3.5.3 Transparent Heterogeneous Mobile Ad-Hoc Networks
	2.3.5.4 Linux Ethernet Bridge

	2.4 Linux Kernel Aspects
	2.4.1 Netfilter
	2.4.2 Iptables

	2.5 Discussion

	3 Our Proposed Architecture
	3.1 Architecture Model
	3.1.1 Virtual Interface
	3.1.2 Virtual Bandwidth Aggregation (VBA) / Decider
	3.1.3 Priority Table
	3.1.4 RTT Estimator
	3.1.5 Data Flow - Main Blocks

	3.2 Implementation Aspects
	3.2.1 The Kernel Module
	3.2.1.1 User interface
	3.2.1.2 Registering with the Device Model
	3.2.1.3 Data Interception
	3.2.1.4 The Neighbor Database
	3.2.1.5 Processing Incoming Packets
	3.2.1.6 Processing Outgoing Packets
	3.2.1.7 Decider / Virtual Bandwidth Aggregation (VBA)

	3.2.2 Power Saving Mode
	3.2.3 The libvi library
	3.2.4 The victl command

	3.3 Limitations
	3.4 Security Concerns and Other Aspects

	4 Performance Evaluation
	4.1 Evaluation Objectives and Settings
	4.1.1 Traffic and Network Settings
	4.1.2 Main Topologies

	4.2 Evaluation Results
	4.2.1 Experiment 1
	4.2.2 Experiment 2
	4.2.3 Experiment 3
	4.2.4 Experiment 4

	4.3 Performance Evaluation Summary

	5 Conclusions and Future Work
	6 Bibliography

